Home
Class 12
MATHS
The value of 2sec^(-1) 2 + 2 sin^(-1)(1...

The value of `2sec^(-1) 2 + 2 sin^(-1)(1/2)` is

A

`(pi)/(6)`

B

`(5pi)/(6)`

C

`(7pi)/(6)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2 \sec^{-1}(2) + 2 \sin^{-1}\left(\frac{1}{2}\right)\), we will break it down step by step. ### Step 1: Evaluate \( \sec^{-1}(2) \) The secant function is the reciprocal of the cosine function. Therefore, if \( y = \sec^{-1}(2) \), then: \[ \sec(y) = 2 \implies \cos(y) = \frac{1}{2} \] The angle \( y \) for which \( \cos(y) = \frac{1}{2} \) is: \[ y = \frac{\pi}{3} \] Thus, \[ \sec^{-1}(2) = \frac{\pi}{3} \] ### Step 2: Evaluate \( \sin^{-1}\left(\frac{1}{2}\right) \) The sine function gives \( \frac{1}{2} \) at: \[ x = \frac{\pi}{6} \] So, \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] ### Step 3: Substitute the values back into the expression Now we substitute these values back into the original expression: \[ 2 \sec^{-1}(2) + 2 \sin^{-1}\left(\frac{1}{2}\right) = 2 \left(\frac{\pi}{3}\right) + 2 \left(\frac{\pi}{6}\right) \] ### Step 4: Simplify the expression Calculating each term: \[ 2 \left(\frac{\pi}{3}\right) = \frac{2\pi}{3} \] \[ 2 \left(\frac{\pi}{6}\right) = \frac{\pi}{3} \] Now, adding these two results together: \[ \frac{2\pi}{3} + \frac{\pi}{3} = \frac{2\pi + \pi}{3} = \frac{3\pi}{3} = \pi \] ### Final Answer Thus, the value of \( 2 \sec^{-1}(2) + 2 \sin^{-1}\left(\frac{1}{2}\right) \) is: \[ \boxed{\pi} \]

To solve the expression \(2 \sec^{-1}(2) + 2 \sin^{-1}\left(\frac{1}{2}\right)\), we will break it down step by step. ### Step 1: Evaluate \( \sec^{-1}(2) \) The secant function is the reciprocal of the cosine function. Therefore, if \( y = \sec^{-1}(2) \), then: \[ \sec(y) = 2 \implies \cos(y) = \frac{1}{2} ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0, then the value of 2sec^(-1)(x/2) + sin^(-1)(x/2) is equal to

If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0, then the value of 2sec^(-1)(x/2) + sin^(-1)(x/2) is equal to

Find the value of 2\ sec^(-1)2+sin^(-1)(1/2) .

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

Write the value of cos^(-1)(1/2)+2\ sin^(-1)(1/2)

Write the value of cos^(-1)(-1/2)+2sin^(-1)(1/2)

If x in [-1, 0] , then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^(-1) x

Find the value of: cos^(-1)(1/2)+2sin^(-1)(1/2)

If x in [-1, 0) then find the value of cos^(-1) (2x^(2) -1) -2 sin^(-1) x

Write the principal value of cos^(-1)(1/2)-2sin^(-1)(-1/2)