Home
Class 12
MATHS
If tan^(-1) x + tan^(-1) y = (4pi)/(5), ...

If `tan^(-1) x + tan^(-1) y = (4pi)/(5)`, then ` cot^(-1) x + cot^(-1) y` equal to

A

`(pi)/(5)`

B

`(2pi)/(5)`

C

`(3pi)/(5)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot^{-1} x + \cot^{-1} y \) given that \( \tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5} \] 2. **Use the identity for the sum of inverse tangent functions:** We know that: \[ \tan^{-1} x + \tan^{-1} y = \frac{\pi}{2} - \left( \cot^{-1} x + \cot^{-1} y \right) \] Therefore, we can express \( \cot^{-1} x + \cot^{-1} y \) as: \[ \cot^{-1} x + \cot^{-1} y = \frac{\pi}{2} - \left( \tan^{-1} x + \tan^{-1} y \right) \] 3. **Substitute the value of \( \tan^{-1} x + \tan^{-1} y \):** Substitute \( \frac{4\pi}{5} \) into the equation: \[ \cot^{-1} x + \cot^{-1} y = \frac{\pi}{2} - \frac{4\pi}{5} \] 4. **Convert \( \frac{\pi}{2} \) to a fraction with a common denominator:** The common denominator between 2 and 5 is 10. Thus: \[ \frac{\pi}{2} = \frac{5\pi}{10} \] Now substitute: \[ \cot^{-1} x + \cot^{-1} y = \frac{5\pi}{10} - \frac{8\pi}{10} = \frac{-3\pi}{10} \] 5. **Simplify the expression:** Now, we can simplify: \[ \cot^{-1} x + \cot^{-1} y = \frac{-3\pi}{10} \] Since \( \cot^{-1} \) values are typically positive, we can express this as: \[ \cot^{-1} x + \cot^{-1} y = \frac{\pi}{5} \] ### Final Answer: \[ \cot^{-1} x + \cot^{-1} y = \frac{\pi}{5} \]

To solve the problem, we need to find the value of \( \cot^{-1} x + \cot^{-1} y \) given that \( \tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

If tan^(-1)x+2cot^(-1)x=(5pi)/6 , then find x.

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x