Home
Class 12
MATHS
The value of cot[cos^(-1)(7/25)] is...

The value of `cot[cos^(-1)(7/25)]` is

A

`25/24`

B

`25/7`

C

`24/25`

D

`7/24`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cot(\cos^{-1}(\frac{7}{25})) \), we can use a right triangle approach. Here’s a step-by-step solution: ### Step 1: Understand the meaning of \( \cos^{-1}(\frac{7}{25}) \) Let \( \theta = \cos^{-1}(\frac{7}{25}) \). This means that \( \cos(\theta) = \frac{7}{25} \). ### Step 2: Draw a right triangle In a right triangle, the cosine of an angle is defined as the ratio of the adjacent side (base) to the hypotenuse. Here, we can set: - Adjacent side (base) = 7 - Hypotenuse = 25 ### Step 3: Use the Pythagorean theorem to find the opposite side Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Base}^2 + \text{Perpendicular}^2 \] Substituting the known values: \[ 25^2 = 7^2 + \text{Perpendicular}^2 \] Calculating the squares: \[ 625 = 49 + \text{Perpendicular}^2 \] Now, isolate the perpendicular: \[ \text{Perpendicular}^2 = 625 - 49 = 576 \] Taking the square root: \[ \text{Perpendicular} = \sqrt{576} = 24 \] ### Step 4: Find \( \cot(\theta) \) The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side: \[ \cot(\theta) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{7}{24} \] ### Step 5: Conclusion Thus, the value of \( \cot(\cos^{-1}(\frac{7}{25})) \) is: \[ \boxed{\frac{7}{24}} \] ---

To find the value of \( \cot(\cos^{-1}(\frac{7}{25})) \), we can use a right triangle approach. Here’s a step-by-step solution: ### Step 1: Understand the meaning of \( \cos^{-1}(\frac{7}{25}) \) Let \( \theta = \cos^{-1}(\frac{7}{25}) \). This means that \( \cos(\theta) = \frac{7}{25} \). ### Step 2: Draw a right triangle In a right triangle, the cosine of an angle is defined as the ratio of the adjacent side (base) to the hypotenuse. Here, we can set: - Adjacent side (base) = 7 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

The value of 1+cot ^2A is

The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

Evaluate: tan{cos^(-1)(-7/(25))}

Evaluate : tan(cos^-1(-7/25))

Evaluate : tan(cos^-1(-7/25))

Find the value of 2 cos^(-1).(3)/(sqrt13) + cot^(-1).(16)/(63) + (1)/(2) cos^(-1).(7)/(25)

The value of sin\ (1/2cot^(-1)(-3/4))+cos(1/2cot^(-1)(-3/4)) is/are equal to-

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

The value of cot [sin^(-1){cos(tan^(-1)1)}] is