Home
Class 12
MATHS
The value of tan(1/2 cos^(-1)(2/(sqrt(5)...

The value of `tan(1/2 cos^(-1)(2/(sqrt(5))))` is

A

`2+sqrt(5)`

B

`sqrt(5) -2`

C

`(sqrt(5)+2)/(2)`

D

`5+sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \), we will follow these steps: ### Step 1: Set up the equation Let \[ \theta = \frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \] Then we need to find \( \tan(\theta) \). ### Step 2: Express \( \cos(2\theta) \) Using the double angle identity for cosine, we have: \[ \cos(2\theta) = \frac{2}{\sqrt{5}} \] From the double angle formula, we know: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Setting these equal gives: \[ 2\cos^2(\theta) - 1 = \frac{2}{\sqrt{5}} \] ### Step 3: Solve for \( \cos^2(\theta) \) Rearranging the equation: \[ 2\cos^2(\theta) = \frac{2}{\sqrt{5}} + 1 \] \[ 2\cos^2(\theta) = \frac{2 + \sqrt{5}}{\sqrt{5}} \] Dividing both sides by 2: \[ \cos^2(\theta) = \frac{2 + \sqrt{5}}{2\sqrt{5}} \] ### Step 4: Find \( \sin^2(\theta) \) Using the Pythagorean identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \): \[ \sin^2(\theta) = 1 - \cos^2(\theta) \] Substituting the value of \( \cos^2(\theta) \): \[ \sin^2(\theta) = 1 - \frac{2 + \sqrt{5}}{2\sqrt{5}} = \frac{2\sqrt{5} - (2 + \sqrt{5})}{2\sqrt{5}} = \frac{2\sqrt{5} - 2 - \sqrt{5}}{2\sqrt{5}} = \frac{\sqrt{5} - 2}{2\sqrt{5}} \] ### Step 5: Calculate \( \tan(\theta) \) Now we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\sqrt{\sin^2(\theta)}}{\sqrt{\cos^2(\theta)}} \] Using the values we found: \[ \tan(\theta) = \frac{\sqrt{\frac{\sqrt{5} - 2}{2\sqrt{5}}}}{\sqrt{\frac{2 + \sqrt{5}}{2\sqrt{5}}}} = \frac{\sqrt{\sqrt{5} - 2}}{\sqrt{2 + \sqrt{5}}} \] ### Step 6: Rationalize the denominator To rationalize the denominator: \[ \tan(\theta) = \frac{\sqrt{\sqrt{5} - 2}}{\sqrt{2 + \sqrt{5}}} \cdot \frac{\sqrt{2 - \sqrt{5}}}{\sqrt{2 - \sqrt{5}}} = \frac{\sqrt{(\sqrt{5} - 2)(2 - \sqrt{5})}}{2 - 5} = \frac{\sqrt{5 - 2\sqrt{5} - 4}}{-3} = \frac{\sqrt{1 - 2\sqrt{5}}}{-3} \] ### Final Result Thus, the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \) simplifies to: \[ \boxed{\sqrt{5} - 2} \]

To find the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \), we will follow these steps: ### Step 1: Set up the equation Let \[ \theta = \frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \] Then we need to find \( \tan(\theta) \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

Write the value of tan^(-1)[2sin(2cos^(-1)((sqrt(3))/2))] .

Write the value of tan^(-1)[2sin(2cos^(-1)(sqrt(3)/2))] .

If the value of the expression tan((1)/(2)cos^(-1).(2)/(sqrt5)) is in the form of a+sqrtb where a, b in Z , then the value of (a+b)/(b) is

Evaluate: tan{1/2cos^(-1)(sqrt5/3)}

Write the value of tan^(-1){2sin(2cos^(-1)(sqrt(3))/2)}dot

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

1.What is the value of tan[(1)/(2)cos^(-1)((3)/(5))]+tan[(1)/(2)cos^(-1)((4)/(5))] ?

What is the value of tan[(1)/(2)cos^(-1)((3)/(5))]+tan[(1)/(2)cos^(-1)((4)/(5))]? (a) (5)/(6) (b) (-5)/(6) (c) (1)/(2) (d) 0

Write the value of tan^(-1)[2sin(2cos^(-1)(sqrt3/2))]