Home
Class 12
MATHS
If |x| le 1, then 2tan^(-1)x + sin^(-1)...

If `|x| le 1`, then ` 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2)))` is equal to

A

`4 tan^(-1)x`

B

`0`

C

`pi/2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( 2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) given that \( |x| \leq 1 \). ### Step-by-step Solution: 1. **Substitute \( x \) with \( \tan(\theta) \)**: Let \( x = \tan(\theta) \). Since \( |x| \leq 1 \), this implies \( |\theta| \leq \frac{\pi}{4} \). 2. **Calculate \( 2\tan^{-1}(x) \)**: Using the substitution, we have: \[ 2\tan^{-1}(x) = 2\tan^{-1}(\tan(\theta)) = 2\theta \] 3. **Calculate \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \)**: We know from the double angle identity for sine that: \[ \sin(2\theta) = \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \frac{2x}{1+x^2} \] Therefore, \[ \sin^{-1}\left(\frac{2x}{1+x^2}\right) = \sin^{-1}(\sin(2\theta)) = 2\theta \] 4. **Combine the results**: Now, we can combine the two results: \[ 2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\theta + 2\theta = 4\theta \] 5. **Substitute back for \( \theta \)**: Since \( \theta = \tan^{-1}(x) \), we substitute back: \[ 4\theta = 4\tan^{-1}(x) \] 6. **Final Result**: Thus, the expression \( 2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) simplifies to: \[ \boxed{4\tan^{-1}(x)} \]

To solve the problem, we need to find the value of the expression \( 2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) given that \( |x| \leq 1 \). ### Step-by-step Solution: 1. **Substitute \( x \) with \( \tan(\theta) \)**: Let \( x = \tan(\theta) \). Since \( |x| \leq 1 \), this implies \( |\theta| \leq \frac{\pi}{4} \). 2. **Calculate \( 2\tan^{-1}(x) \)**: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

If x >1 , then write the value of sin^(-1)((2x)/(1+x^2)) in terms of tan^(-1)x

sin(tan^(-1)x),|x| le 1 is equal to :

I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1 .T h e n , f(5) is equal to

If log_(2)xge0 then log_(1//pi){sin^(-1)((2x)/(1+x^(2)))+2tan^(-1)x} is equal

Solve tan^(-1) x + sin^(-1) x = tan^(-1) 2x

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals