Home
Class 12
MATHS
If cos^(-1) alpha + cos^(-1) beta + cos^...

If `cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi`, then `alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta)` equal to

A

`0`

B

`1`

C

`6`

D

`12`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3 pi`
We know that `0 le cos^(-1) x le pi`
`rArr cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3 pi`
If and only if, `cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = pi`
`rArr cos pi = alpha = beta = gamma`
`rArr -1 = alpha = beta = gamma`
`rArr alpha = beta = gamma = - 1`
`:. alpha(beta + gamma) + beta(gamma + alpha) + gamma (alpha + beta)`
`= - 1 (-1-1)-1(-1-1)-1(-1-1)`
`= 2+2+2 = 6`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If cos alpha + cos beta + cos gamma = 0 and also sin alpha + sin beta + sin gamma= 0, then prove that: cos 3 alpha + cos 3beta + cos 3gamma = 3 cos (alpha + beta + gamma)

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 then the coefficient of x in cubic equation whose roots are alpha ( beta + gamma ) , beta ( gamma + alpha) and gamma ( alpha + beta) is