Home
Class 12
MATHS
If cos^(-1)x gt sin^(-1) x, then...

If `cos^(-1)x gt sin^(-1) x`, then

A

`1/(sqrt(2)) lt x le 1`

B

`0 le x le 1/(sqrt(2))`

C

`-1 le x lt 1/(sqrt(2))`

D

`x gt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cos^{-1} x > \sin^{-1} x \), we can follow these steps: ### Step 1: Use the identity We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] From this, we can express \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] ### Step 2: Substitute into the inequality Substituting this into the inequality gives us: \[ \frac{\pi}{2} - \sin^{-1} x > \sin^{-1} x \] ### Step 3: Rearrange the inequality Now, we can rearrange this inequality: \[ \frac{\pi}{2} > \sin^{-1} x + \sin^{-1} x \] This simplifies to: \[ \frac{\pi}{2} > 2 \sin^{-1} x \] ### Step 4: Divide by 2 Dividing both sides by 2 results in: \[ \frac{\pi}{4} > \sin^{-1} x \] or equivalently: \[ \sin^{-1} x < \frac{\pi}{4} \] ### Step 5: Apply the sine function Now, we can apply the sine function to both sides. Since the sine function is increasing in the range of \( \sin^{-1} x \): \[ x < \sin\left(\frac{\pi}{4}\right) \] Knowing that \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \), we can write: \[ x < \frac{1}{\sqrt{2}} \] ### Step 6: Consider the range of \( \sin^{-1} x \) The range of \( \sin^{-1} x \) is: \[ -\frac{\pi}{2} \leq \sin^{-1} x \leq \frac{\pi}{2} \] This implies: \[ -1 \leq x \leq 1 \] ### Step 7: Combine the inequalities Now we combine the inequalities: 1. From \( \sin^{-1} x < \frac{\pi}{4} \), we have \( x < \frac{1}{\sqrt{2}} \). 2. From the range of \( \sin^{-1} x \), we have \( -1 \leq x \leq 1 \). Thus, we can conclude: \[ -1 \leq x < \frac{1}{\sqrt{2}} \] ### Final Answer The solution to the inequality \( \cos^{-1} x > \sin^{-1} x \) is: \[ -1 \leq x < \frac{1}{\sqrt{2}} \]

To solve the inequality \( \cos^{-1} x > \sin^{-1} x \), we can follow these steps: ### Step 1: Use the identity We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] From this, we can express \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x >sin^(-1)x , then

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

STATEMENT -1 : If [sin^(-1)x] gt [cos^(-1)x] ,where [] represents the greatest integer function, then x in [sin1,1] is and STATEMENT -2 : cos^(-1)(cosx)=x,x in [-1,1]

If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is _______ .

If alpha=sin^(-1)(cos(sin^(-1)x))a n dbeta=cos^(-1)("sin"(cos^(-1)x)), then find tanalphadottanbeta

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If cos^(-1)(cos 4)gt3x^(2)-4x then

Solve sin^(-1) x gt tan^(-1) x

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)