Home
Class 12
MATHS
The value of cos(sin^(-1)x + cos^(-1)x...

The value of `cos(sin^(-1)x + cos^(-1)x)`, where `|x| le 1`, is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \cos(\sin^{-1} x + \cos^{-1} x) \), where \( |x| \leq 1 \), we can follow these steps: ### Step 1: Use the property of inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This property holds true for any \( x \) in the range \( -1 \leq x \leq 1 \). ### Step 2: Substitute the property into the expression Now, we can substitute this result into our expression: \[ \cos(\sin^{-1} x + \cos^{-1} x) = \cos\left(\frac{\pi}{2}\right) \] ### Step 3: Evaluate \( \cos\left(\frac{\pi}{2}\right) \) The value of \( \cos\left(\frac{\pi}{2}\right) \) is: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] ### Step 4: Conclusion Thus, the value of \( \cos(\sin^{-1} x + \cos^{-1} x) \) is: \[ \boxed{0} \] ---

To solve the problem of finding the value of \( \cos(\sin^{-1} x + \cos^{-1} x) \), where \( |x| \leq 1 \), we can follow these steps: ### Step 1: Use the property of inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This property holds true for any \( x \) in the range \( -1 \leq x \leq 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of : sin (sin^(-1) x + cos^(-1) x)

Write the value of cos(sin^(-1)x+cos^(-1)x) , |x|lt=1 .

solve sin^(-1) x le cos^(-1) x

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

If cos^(-1)x gt sin^(-1) x , then

Find the maximum and minimum values of (sin^(-1)x)^3+(cos^(-1)x)^3, where -1lt=xlt=1.

Find the maximum and minimum values of (sin^(-1)x)^3+(cos^(-1)x)^3, where -1lt=xlt=1.

If cos^(-1)x >sin^(-1)x , then

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  2. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  3. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  4. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  5. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  6. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  7. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  8. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  9. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  10. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  11. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  12. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  13. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  14. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  15. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  16. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  17. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  18. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |