Home
Class 12
MATHS
The value of tan((sin^(-1)x+cos^(-1)x)/(...

The value of `tan((sin^(-1)x+cos^(-1)x)/(2))`, when `x = (sqrt(3))/(2)`, is `"……."`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right) \) when \( x = \frac{\sqrt{3}}{2} \), we can follow these steps: ### Step 1: Identify the values of \( \sin^{-1}x \) and \( \cos^{-1}x \) Given \( x = \frac{\sqrt{3}}{2} \): - \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \) (since sine of \( \frac{\pi}{3} \) is \( \frac{\sqrt{3}}{2} \)) - \( \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \) (since cosine of \( \frac{\pi}{6} \) is \( \frac{\sqrt{3}}{2} \)) ### Step 2: Add the values of \( \sin^{-1}x \) and \( \cos^{-1}x \) Now, we add these two values: \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} + \frac{\pi}{6} \] To add these fractions, we need a common denominator: - The LCM of 3 and 6 is 6. - Convert \( \frac{\pi}{3} \) to sixths: \( \frac{\pi}{3} = \frac{2\pi}{6} \) Now, we can add: \[ \frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] ### Step 3: Substitute back into the original expression Now, we substitute this result back into the original function: \[ \tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right) = \tan\left(\frac{\frac{\pi}{2}}{2}\right) = \tan\left(\frac{\pi}{4}\right) \] ### Step 4: Calculate the final value We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, the final answer is: \[ \boxed{1} \]

To solve the problem of finding the value of \( \tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right) \) when \( x = \frac{\sqrt{3}}{2} \), we can follow these steps: ### Step 1: Identify the values of \( \sin^{-1}x \) and \( \cos^{-1}x \) Given \( x = \frac{\sqrt{3}}{2} \): - \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \) (since sine of \( \frac{\pi}{3} \) is \( \frac{\sqrt{3}}{2} \)) - \( \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \) (since cosine of \( \frac{\pi}{6} \) is \( \frac{\sqrt{3}}{2} \)) ### Step 2: Add the values of \( \sin^{-1}x \) and \( \cos^{-1}x \) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Write the value of cos((tan^(-1)x+cot^(-1)x)/3) , when x=-1/(sqrt(3)) .

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

The value of lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "

Let f(x)=sin^(-1)((2x+2)/(sqrt(4x^(2)+8x+13))) , then the value of (d(tanf(x)))/(d(tan^(-1)x)) , when x=(1)/(2), is..........

Statement-1: sin^(-1)tan((tan^(-1))x+tan^(-1)(1-x))] =(pi)/(2) has no non zero integral solution Statement-2: The greatest and least values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3) are (7pi)^(3)/(8) and (pi)^(3)/(32) respectively

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  2. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  3. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  4. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  5. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  6. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  7. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  8. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  9. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  10. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  11. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  12. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  13. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  14. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  15. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  16. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  17. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  18. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |