Home
Class 12
MATHS
The value of cot^(-1)(-x) x in R in term...

The value of `cot^(-1)(-x) x in R` in terms of `cot^(-1)x` is `"…….."`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cot^{-1}(-x) \) in terms of \( \cot^{-1}(x) \), we can use the properties of the inverse cotangent function. ### Step-by-step Solution: 1. **Understanding the Inverse Cotangent Function**: The inverse cotangent function, \( \cot^{-1}(x) \), gives us an angle \( \theta \) such that \( \cot(\theta) = x \). The range of \( \cot^{-1}(x) \) is \( (0, \pi) \). 2. **Using the Property of Cotangent**: We know that: \[ \cot(-\theta) = -\cot(\theta) \] This means that if \( \theta = \cot^{-1}(x) \), then: \[ \cot(-\theta) = -x \] Hence, we can express \( \cot^{-1}(-x) \) in terms of \( \theta \). 3. **Expressing \( \cot^{-1}(-x) \)**: If \( \theta = \cot^{-1}(x) \), then: \[ \cot^{-1}(-x) = -\theta \] However, since we want the angle to be within the range \( (0, \pi) \), we can express this as: \[ \cot^{-1}(-x) = \pi - \theta \] 4. **Substituting Back**: Substituting \( \theta \) back, we have: \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \] ### Final Answer: Thus, the value of \( \cot^{-1}(-x) \) in terms of \( \cot^{-1}(x) \) is: \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \]

To find the value of \( \cot^{-1}(-x) \) in terms of \( \cot^{-1}(x) \), we can use the properties of the inverse cotangent function. ### Step-by-step Solution: 1. **Understanding the Inverse Cotangent Function**: The inverse cotangent function, \( \cot^{-1}(x) \), gives us an angle \( \theta \) such that \( \cot(\theta) = x \). The range of \( \cot^{-1}(x) \) is \( (0, \pi) \). 2. **Using the Property of Cotangent**: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)sqrt(x)

Write the value of tan^(-1)(1/x) for x<0 in terms of cot^(-1)(x) .

The principal value of cot^(-1)x lie in

Evaluate: sin(cot^(-1)x)

Write the value of sin(cot^(-1)x) .

Write the value of sin(cot^(-1)x) .

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

int\ cot^(-1)x\ dx

int cot^-1 x dx

tan(cot^(-1)x) is equal to

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  2. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  3. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  4. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  5. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  6. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  7. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  8. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  9. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  10. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  11. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  12. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  13. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  14. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  15. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  16. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  17. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  18. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |