Home
Class 12
MATHS
verify that int(2x-1)/(2x+3)dx = x - log...

verify that `int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To verify that \[ \int \frac{2x-1}{2x+3} \, dx = x - \log|(2x+3)^{2}| + C, \] we will perform the integration step by step. ### Step 1: Rewrite the integrand We start with the integral: \[ \int \frac{2x-1}{2x+3} \, dx. \] We can rewrite the numerator \(2x - 1\) as follows: \[ 2x - 1 = (2x + 3) - 4. \] Thus, we can express the integral as: \[ \int \frac{(2x + 3) - 4}{2x + 3} \, dx = \int \left(1 - \frac{4}{2x + 3}\right) \, dx. \] ### Step 2: Separate the integral Now we can separate the integral into two parts: \[ \int \left(1 - \frac{4}{2x + 3}\right) \, dx = \int 1 \, dx - \int \frac{4}{2x + 3} \, dx. \] ### Step 3: Integrate each part 1. The integral of \(1\) is: \[ \int 1 \, dx = x. \] 2. For the second integral, we have: \[ \int \frac{4}{2x + 3} \, dx. \] Using the substitution \(u = 2x + 3\), we find \(du = 2 \, dx\) or \(dx = \frac{du}{2}\). Therefore, we can rewrite the integral as: \[ \int \frac{4}{u} \cdot \frac{du}{2} = 2 \int \frac{1}{u} \, du = 2 \log |u| + C = 2 \log |2x + 3| + C. \] ### Step 4: Combine the results Now substituting back, we have: \[ \int \frac{2x - 1}{2x + 3} \, dx = x - 2 \log |2x + 3| + C. \] ### Step 5: Simplify the logarithm Using the property of logarithms, \(a \log b = \log b^a\), we can rewrite \(2 \log |2x + 3|\) as: \[ \log |(2x + 3)^2|. \] Thus, we have: \[ \int \frac{2x - 1}{2x + 3} \, dx = x - \log |(2x + 3)^2| + C. \] ### Conclusion This matches the right-hand side of the original equation: \[ x - \log |(2x + 3)^2| + C. \] Therefore, we have verified that \[ \int \frac{2x-1}{2x+3} \, dx = x - \log|(2x+3)^{2}| + C. \]

To verify that \[ \int \frac{2x-1}{2x+3} \, dx = x - \log|(2x+3)^{2}| + C, \] we will perform the integration step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

int(2x+1)/((x+2)(x-3))dx

int(2x+3)/((x-1)^3)dx

int((x+1)(2x-3))/(x) dx

int (x+1)/(2x^2+3x+4) dx

Evaluate: int(2x+1)/(x^2+x+3)dx

int(3x+1)/(2x^(2)+x-1)dx

int (3x-2)^(1/2) dx , x>2/3

5. int(1)/(3x^(2)+2x+1)dx

(1) int(2x+3)/((x-1)(x-2))dx