To verify the integral \(\int \frac{2x+3}{x^2+3x} \, dx = \log|x^2+3x| + C\), we will follow these steps:
### Step 1: Identify the integral
We start with the left-hand side (LHS):
\[
I = \int \frac{2x + 3}{x^2 + 3x} \, dx
\]
### Step 2: Simplify the denominator
We notice that the denominator can be factored:
\[
x^2 + 3x = x(x + 3)
\]
### Step 3: Use substitution
We will use the substitution method. Let:
\[
t = x^2 + 3x
\]
Now, we need to find \(dt\):
\[
\frac{dt}{dx} = \frac{d}{dx}(x^2 + 3x) = 2x + 3
\]
Thus, we have:
\[
dt = (2x + 3) \, dx
\]
### Step 4: Rewrite the integral
Now, substituting \(t\) and \(dt\) into the integral:
\[
I = \int \frac{dt}{t}
\]
### Step 5: Integrate
The integral of \(\frac{1}{t}\) is:
\[
I = \log |t| + C
\]
### Step 6: Substitute back for \(t\)
Now, we substitute back \(t = x^2 + 3x\):
\[
I = \log |x^2 + 3x| + C
\]
### Step 7: Conclusion
Thus, we have verified that:
\[
\int \frac{2x + 3}{x^2 + 3x} \, dx = \log |x^2 + 3x| + C
\]
To verify the integral \(\int \frac{2x+3}{x^2+3x} \, dx = \log|x^2+3x| + C\), we will follow these steps:
### Step 1: Identify the integral
We start with the left-hand side (LHS):
\[
I = \int \frac{2x + 3}{x^2 + 3x} \, dx
\]
...
Topper's Solved these Questions
INTEGRALS
NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos