Home
Class 12
MATHS
int((x^(2)+2))/(x+1)dx...

`int((x^(2)+2))/(x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^2 + 2}{x + 1} \, dx\), we can use polynomial long division to simplify the integrand. Here’s a step-by-step solution: ### Step 1: Polynomial Long Division We divide \(x^2 + 2\) by \(x + 1\). 1. Divide the leading term: \(x^2 \div x = x\). 2. Multiply \(x\) by \(x + 1\): \(x(x + 1) = x^2 + x\). 3. Subtract: \[ (x^2 + 2) - (x^2 + x) = 2 - x \] So, we can express the integrand as: \[ \frac{x^2 + 2}{x + 1} = x + \frac{2 - x}{x + 1} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{x^2 + 2}{x + 1} \, dx = \int \left( x + \frac{2 - x}{x + 1} \right) \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int \left( x + \frac{2 - x}{x + 1} \right) \, dx = \int x \, dx + \int \frac{2 - x}{x + 1} \, dx \] ### Step 4: Integrate the First Part The first integral is straightforward: \[ \int x \, dx = \frac{x^2}{2} \] ### Step 5: Simplify the Second Integral Now, we need to integrate \(\frac{2 - x}{x + 1}\). We can split this into two separate fractions: \[ \frac{2 - x}{x + 1} = \frac{2}{x + 1} - \frac{x}{x + 1} \] ### Step 6: Integrate the Second Part Now we can integrate each term: 1. \(\int \frac{2}{x + 1} \, dx = 2 \ln |x + 1|\) 2. \(\int \frac{x}{x + 1} \, dx\): We can use substitution or recognize that \(\frac{x}{x + 1} = 1 - \frac{1}{x + 1}\): \[ \int \frac{x}{x + 1} \, dx = \int (1 - \frac{1}{x + 1}) \, dx = x - \ln |x + 1| \] ### Step 7: Combine All Parts Now we can combine all the parts together: \[ \int \frac{x^2 + 2}{x + 1} \, dx = \frac{x^2}{2} + \left(2 \ln |x + 1| - (x - \ln |x + 1|)\right) + C \] This simplifies to: \[ \int \frac{x^2 + 2}{x + 1} \, dx = \frac{x^2}{2} + 3 \ln |x + 1| - x + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2 + 2}{x + 1} \, dx = \frac{x^2}{2} - x + 3 \ln |x + 1| + C \]

To solve the integral \(\int \frac{x^2 + 2}{x + 1} \, dx\), we can use polynomial long division to simplify the integrand. Here’s a step-by-step solution: ### Step 1: Polynomial Long Division We divide \(x^2 + 2\) by \(x + 1\). 1. Divide the leading term: \(x^2 \div x = x\). 2. Multiply \(x\) by \(x + 1\): \(x(x + 1) = x^2 + x\). 3. Subtract: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int (x)/(x^(2)+2x+1)dx

int(x^(2) +3)/(x^(2)+1)dx

int_(0)^(2)(x+2)/(x+1)dx is

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx

int(1)/(2x^(2)-4x+1)dx

int(1)/(2x^(2)+x+1)dx

5. int(1)/(3x^(2)+2x+1)dx

int (2x^2)/(x^3+1) dx

int (2x^2)/(x^3+1) dx