Home
Class 12
MATHS
int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3...

`int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^{6 \log x} - e^{5 \log x}}{e^{4 \log x} - e^{3 \log x}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Exponential Expressions Using the property of exponents and logarithms, we can rewrite \( e^{m \log n} \) as \( n^m \). Therefore: \[ e^{6 \log x} = x^6, \quad e^{5 \log x} = x^5, \quad e^{4 \log x} = x^4, \quad e^{3 \log x} = x^3. \] Substituting these into the integral gives: \[ \int \frac{x^6 - x^5}{x^4 - x^3} \, dx. \] ### Step 2: Factor the Numerator and Denominator We can factor out common terms from the numerator and the denominator: - In the numerator \( x^6 - x^5 \), we can factor out \( x^5 \): \[ x^6 - x^5 = x^5(x - 1). \] - In the denominator \( x^4 - x^3 \), we can factor out \( x^3 \): \[ x^4 - x^3 = x^3(x - 1). \] Now the integral becomes: \[ \int \frac{x^5(x - 1)}{x^3(x - 1)} \, dx. \] ### Step 3: Cancel Common Factors Since \( x - 1 \) is common in both the numerator and the denominator, we can cancel it (assuming \( x \neq 1 \)): \[ \int \frac{x^5}{x^3} \, dx = \int x^{5 - 3} \, dx = \int x^2 \, dx. \] ### Step 4: Integrate Now we can integrate \( x^2 \): \[ \int x^2 \, dx = \frac{x^3}{3} + C, \] where \( C \) is the constant of integration. ### Final Answer Thus, the final solution to the integral is: \[ \frac{x^3}{3} + C. \] ---

To solve the integral \[ \int \frac{e^{6 \log x} - e^{5 \log x}}{e^{4 \log x} - e^{3 \log x}} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

Integrate the functions (e^(5logx)-e^(4logx))/(e^(2logx)-e^(2logx))

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

int(logx/(1+logx)^2)dx

The value of x satisfying 5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1) , where the base of logarithm is 10

int(dx)/(x.logx.log(logx))=

int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

intdx/(x[(logx)^2+4logx-1])