Home
Class 12
MATHS
int((1+cosx))/(x+sinx)dx...

`int((1+cosx))/(x+sinx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \cos x}{x + \sin x} \, dx \), we can use the substitution method. Here’s the step-by-step solution: ### Step 1: Set Up the Integral We start with the integral: \[ I = \int \frac{1 + \cos x}{x + \sin x} \, dx \] ### Step 2: Choose a Substitution We notice that the denominator \( x + \sin x \) can be a good candidate for substitution. Let: \[ t = x + \sin x \] ### Step 3: Differentiate the Substitution Next, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 1 + \cos x \] This implies: \[ dt = (1 + \cos x) \, dx \] ### Step 4: Substitute in the Integral Now, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{1 + \cos x} \] Substituting \( t \) and \( dt \) into the integral gives: \[ I = \int \frac{dt}{t} \] ### Step 5: Integrate The integral \( \int \frac{dt}{t} \) is a standard integral: \[ I = \ln |t| + C \] where \( C \) is the constant of integration. ### Step 6: Substitute Back Now, we substitute back for \( t \): \[ I = \ln |x + \sin x| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 + \cos x}{x + \sin x} \, dx = \ln |x + \sin x| + C \] ---

To solve the integral \( \int \frac{1 + \cos x}{x + \sin x} \, dx \), we can use the substitution method. Here’s the step-by-step solution: ### Step 1: Set Up the Integral We start with the integral: \[ I = \int \frac{1 + \cos x}{x + \sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1+cosx)/((x+sinx)^3)dx

The value of int(sinx +cosx)/(3+sin2x)dx , is

int cosx . sinx dx

Evaluate: int(1-sinx)/(x+cosx)dx

int(cosx)/((1+sinx)(2+sinx))dx

Evaluate : int(sinx+cosx)/(sin(x-a))dx

Evaluate int((cosx)/(x)-logx^(sinx))dx .

Evaluate: int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

Evaluate : int(sinx-cosx)/(3+2sin2x)dx .