To solve the integral \( \int \frac{1 + \cos x}{x + \sin x} \, dx \), we can use the substitution method. Here’s the step-by-step solution:
### Step 1: Set Up the Integral
We start with the integral:
\[
I = \int \frac{1 + \cos x}{x + \sin x} \, dx
\]
### Step 2: Choose a Substitution
We notice that the denominator \( x + \sin x \) can be a good candidate for substitution. Let:
\[
t = x + \sin x
\]
### Step 3: Differentiate the Substitution
Next, we differentiate \( t \) with respect to \( x \):
\[
\frac{dt}{dx} = 1 + \cos x
\]
This implies:
\[
dt = (1 + \cos x) \, dx
\]
### Step 4: Substitute in the Integral
Now, we can express \( dx \) in terms of \( dt \):
\[
dx = \frac{dt}{1 + \cos x}
\]
Substituting \( t \) and \( dt \) into the integral gives:
\[
I = \int \frac{dt}{t}
\]
### Step 5: Integrate
The integral \( \int \frac{dt}{t} \) is a standard integral:
\[
I = \ln |t| + C
\]
where \( C \) is the constant of integration.
### Step 6: Substitute Back
Now, we substitute back for \( t \):
\[
I = \ln |x + \sin x| + C
\]
### Final Answer
Thus, the final answer is:
\[
\int \frac{1 + \cos x}{x + \sin x} \, dx = \ln |x + \sin x| + C
\]
---
To solve the integral \( \int \frac{1 + \cos x}{x + \sin x} \, dx \), we can use the substitution method. Here’s the step-by-step solution:
### Step 1: Set Up the Integral
We start with the integral:
\[
I = \int \frac{1 + \cos x}{x + \sin x} \, dx
\]
...
Topper's Solved these Questions
INTEGRALS
NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos