Home
Class 12
MATHS
int(dx)/(1+cosx)...

`int(dx)/(1+cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{1 + \cos x} \), we can follow these steps: ### Step 1: Rewrite the integral Let \( I = \int \frac{dx}{1 + \cos x} \). ### Step 2: Use a trigonometric identity We can use the identity \( 1 + \cos x = 2 \cos^2 \left( \frac{x}{2} \right) \). Therefore, we can rewrite the integral as: \[ I = \int \frac{dx}{2 \cos^2 \left( \frac{x}{2} \right)} = \frac{1}{2} \int \sec^2 \left( \frac{x}{2} \right) dx \] ### Step 3: Integrate using the known integral The integral of \( \sec^2 u \) is \( \tan u + C \). Thus, we have: \[ I = \frac{1}{2} \cdot \tan \left( \frac{x}{2} \right) + C \] ### Step 4: Final result So, the final result for the integral is: \[ I = \tan \left( \frac{x}{2} \right) + C \]

To solve the integral \( \int \frac{dx}{1 + \cos x} \), we can follow these steps: ### Step 1: Rewrite the integral Let \( I = \int \frac{dx}{1 + \cos x} \). ### Step 2: Use a trigonometric identity We can use the identity \( 1 + \cos x = 2 \cos^2 \left( \frac{x}{2} \right) \). Therefore, we can rewrite the integral as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int (1)/(1-cosx)dx

Evaluate: (i) int(x^3-3x^2+5x-7+x^2\ a^x)/(2x^2)\ dx (ii) int(cosx)/(1+cosx)\ dx

Evaluate : int(sinx)/((1-cosx)\ (2-cosx)\ dx

int(1)/(4+5 cosx)dx

int(dx)/(cosx+sinx) is equal to

Evaluate: int(dx)/(cosx-sinx)

int cosx/(1+cosx) \ dx

Evaluate: (a) int(1+sinx+cosx)dx (b) int(2+cosx)dx (c) int (sinx(1+cosx) )dx (d) int(1-2sinx)dx

int(1-cosx)/(cosx(1+cosx))dx

int(1-cosx)/(cosx(1+cosx))dx