Home
Class 12
MATHS
int tan^(2)xsec^(4)x dx...

`int tan^(2)xsec^(4)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^2 x \sec^4 x \, dx \), we will follow a systematic approach. ### Step-by-step Solution: 1. **Set up the integral:** \[ I = \int \tan^2 x \sec^4 x \, dx \] 2. **Use substitution:** Let \( t = \tan x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = \sec^2 x \quad \Rightarrow \quad dt = \sec^2 x \, dx \] 3. **Rewrite the integral in terms of \( t \):** Since \( \tan^2 x = t^2 \) and \( \sec^4 x = \sec^2 x \cdot \sec^2 x \), we can express the integral as: \[ I = \int t^2 \sec^4 x \, dx = \int t^2 \sec^2 x \cdot \sec^2 x \, dx \] Now substituting \( dx \) with \( dt \): \[ I = \int t^2 \sec^2 x \, dt \] 4. **Relate \( \sec^2 x \) to \( t \):** From the identity \( \tan^2 x + 1 = \sec^2 x \), we have: \[ \sec^2 x = t^2 + 1 \] Thus, we can rewrite the integral: \[ I = \int t^2 (t^2 + 1) \, dt \] 5. **Expand the integrand:** \[ I = \int (t^4 + t^2) \, dt \] 6. **Integrate term by term:** \[ I = \int t^4 \, dt + \int t^2 \, dt = \frac{t^5}{5} + \frac{t^3}{3} + C \] 7. **Substitute back for \( t \):** Recall that \( t = \tan x \): \[ I = \frac{\tan^5 x}{5} + \frac{\tan^3 x}{3} + C \] ### Final Answer: \[ \int \tan^2 x \sec^4 x \, dx = \frac{\tan^5 x}{5} + \frac{\tan^3 x}{3} + C \]

To solve the integral \( \int \tan^2 x \sec^4 x \, dx \), we will follow a systematic approach. ### Step-by-step Solution: 1. **Set up the integral:** \[ I = \int \tan^2 x \sec^4 x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan ^(2) x sec^(4) x dx

Evaluate: inttan^3xsec^4x\ dx

int tan^(3)x*dx

Evaluate: (i) inttan^n xsec^2x\ dx (ii) inttan^2xsec^4x\ dx (iii) intsec^4x\ dx

Evaluate (i) inttan^(3//2)xsec^2x\ dx (ii) int(x^3)/((x^2+1)^3)\ dx

Evaluate: inttan^5xsec^3x\ dx

The value of inttan^(3)2xsec2x dx is equal to:

Evaluate: (i) inttan^5xsec^4x\ dx (ii) intsec^6xtanx\ dx

Evaluate: (i) inttan^3xsec^2x\ dx (ii) inttanxsec^4x\ dx

Write a value of inttan^3xsec^2x\ dx