Home
Class 12
MATHS
int(sinx+cosx)/(sqrt(1+sin2x))dx...

`int(sinx+cosx)/(sqrt(1+sin2x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx, \] we can follow these steps: ### Step 1: Rewrite the denominator First, we note that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the expression under the square root: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x. \] ### Step 2: Use the Pythagorean identity We can use the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \) to rewrite 1: \[ 1 + 2 \sin x \cos x = \sin^2 x + \cos^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2. \] ### Step 3: Substitute into the integral Now substituting this back into the integral gives us: \[ I = \int \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^2}} \, dx. \] Since \( \sqrt{(\sin x + \cos x)^2} = |\sin x + \cos x| \), we can assume \( \sin x + \cos x \) is positive in the interval we are considering (or we can handle the absolute value later). Thus, we have: \[ I = \int \frac{\sin x + \cos x}{\sin x + \cos x} \, dx = \int 1 \, dx. \] ### Step 4: Integrate Now, integrating \( 1 \) with respect to \( x \): \[ I = x + C, \] where \( C \) is the constant of integration. ### Final Result Thus, the final result of the integral is: \[ \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx = x + C. \] ---

To solve the integral \[ I = \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int((sinx+cosx)/(sqrt(sin2x))dx

Evaluate: int(sinx-cosx)/(sqrt(sin2x))dx

Evaluate the definite integrals int_(pi/6)^(pi/3)(sinx+cosx)/(sqrt(sin2x))dx

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int (cosx)/(sqrt(4-sin^2x)) dx

Evaluate int((sinx+cosx)dx)/(sqrt(3+sin2x)).

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

Evaluate : int_(pi//6)^(pi//3)(sinx+cosx)/(sqrt(sin2x))\ dxdot

Evaluate: int(cosx)/(sinx+sqrt(sinx))dx