To solve the integral
\[
I = \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx,
\]
we can follow these steps:
### Step 1: Rewrite the denominator
First, we note that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the expression under the square root:
\[
1 + \sin 2x = 1 + 2 \sin x \cos x.
\]
### Step 2: Use the Pythagorean identity
We can use the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \) to rewrite 1:
\[
1 + 2 \sin x \cos x = \sin^2 x + \cos^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2.
\]
### Step 3: Substitute into the integral
Now substituting this back into the integral gives us:
\[
I = \int \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^2}} \, dx.
\]
Since \( \sqrt{(\sin x + \cos x)^2} = |\sin x + \cos x| \), we can assume \( \sin x + \cos x \) is positive in the interval we are considering (or we can handle the absolute value later).
Thus, we have:
\[
I = \int \frac{\sin x + \cos x}{\sin x + \cos x} \, dx = \int 1 \, dx.
\]
### Step 4: Integrate
Now, integrating \( 1 \) with respect to \( x \):
\[
I = x + C,
\]
where \( C \) is the constant of integration.
### Final Result
Thus, the final result of the integral is:
\[
\int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx = x + C.
\]
---
To solve the integral
\[
I = \int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \, dx,
\]
we can follow these steps:
...
Topper's Solved these Questions
INTEGRALS
NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos