Home
Class 12
MATHS
intsqrt(1+sinx)dx...

`intsqrt(1+sinx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can use the identity \( 1 + \sin x = 1 + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \). This allows us to express \( 1 + \sin x \) in a different form: \[ 1 + \sin x = \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) = \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^2 \] ### Step 2: Substitute the expression Now we can rewrite the integral: \[ \int \sqrt{1 + \sin x} \, dx = \int \sqrt{\left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^2} \, dx \] This simplifies to: \[ \int \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) \, dx \] ### Step 3: Integrate the expression Next, we can integrate the expression: \[ \int \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) \, dx = \int \sin\left(\frac{x}{2}\right) \, dx + \int \cos\left(\frac{x}{2}\right) \, dx \] Using the substitution \( u = \frac{x}{2} \), we have \( dx = 2 \, du \). Thus: \[ \int \sin\left(\frac{x}{2}\right) \, dx = 2 \int \sin(u) \, du = -2 \cos(u) + C = -2 \cos\left(\frac{x}{2}\right) + C \] \[ \int \cos\left(\frac{x}{2}\right) \, dx = 2 \int \cos(u) \, du = 2 \sin(u) + C = 2 \sin\left(\frac{x}{2}\right) + C \] ### Step 4: Combine the results Combining both integrals, we get: \[ \int \sqrt{1 + \sin x} \, dx = -2 \cos\left(\frac{x}{2}\right) + 2 \sin\left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \sqrt{1 + \sin x} \, dx = 2 \left( \sin\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right) \right) + C \]

To solve the integral \( \int \sqrt{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can use the identity \( 1 + \sin x = 1 + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \). This allows us to express \( 1 + \sin x \) in a different form: \[ 1 + \sin x = \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) = \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

If intsqrt(1+sinx)f(x)dx=2/3(1+sinx)^(3/2)+c ,t h e nf(x)e q u a l cosx (b) sinx (c) tanx (d) 1

Evaluate: intsqrt(1-sin2x)\ dx

Evaluate: intsqrt(1+sin(x/2)dx)

intsqrt(1+sin 2x) dx

Evaluate: (i) sqrt(1-cos2x)\ dx (ii) intsqrt(1+sin2x)\ dx

intsqrt(secx+1)dx

intsqrt(sinx)cos^3xdx

intsqrt(x/(1+x))dx

Evaluate: intsqrt (1-x^2)dx

Evaluate: intsqrt (1+x^2)dx