Home
Class 12
MATHS
int(x)/(sqrt(x)+1)dx...

`int(x)/(sqrt(x)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x}{\sqrt{x} + 1} \, dx\), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \(x\) and \(dx\) into the integral gives: \[ \int \frac{x}{\sqrt{x} + 1} \, dx = \int \frac{t^2}{t + 1} \cdot 2t \, dt = 2 \int \frac{t^3}{t + 1} \, dt \] ### Step 3: Simplify the Integral Now, we can simplify \(\frac{t^3}{t + 1}\) by performing polynomial long division: \[ \frac{t^3}{t + 1} = t^2 - t + 1 - \frac{1}{t + 1} \] Thus, we can rewrite the integral as: \[ 2 \int \left( t^2 - t + 1 - \frac{1}{t + 1} \right) dt \] ### Step 4: Integrate Each Term Now we can integrate each term separately: \[ 2 \left( \int t^2 \, dt - \int t \, dt + \int 1 \, dt - \int \frac{1}{t + 1} \, dt \right) \] Calculating these integrals gives: \[ \int t^2 \, dt = \frac{t^3}{3}, \quad \int t \, dt = \frac{t^2}{2}, \quad \int 1 \, dt = t, \quad \int \frac{1}{t + 1} \, dt = \log|t + 1| \] Thus, we have: \[ 2 \left( \frac{t^3}{3} - \frac{t^2}{2} + t - \log|t + 1| \right) + C \] ### Step 5: Substitute Back Now we substitute back \(t = \sqrt{x}\): \[ = 2 \left( \frac{(\sqrt{x})^3}{3} - \frac{(\sqrt{x})^2}{2} + \sqrt{x} - \log|\sqrt{x} + 1| \right) + C \] This simplifies to: \[ = \frac{2x\sqrt{x}}{3} - x + 2\sqrt{x} - 2\log(\sqrt{x} + 1) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x}{\sqrt{x} + 1} \, dx = \frac{2x\sqrt{x}}{3} - x + 2\sqrt{x} - 2\log(\sqrt{x} + 1) + C \]

To solve the integral \(\int \frac{x}{\sqrt{x} + 1} \, dx\), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2)/(sqrt(x-1))dx

int (x-1)sqrt(x+1)dx

Evaluate: int(x^2)/(sqrt(1-x ))dx

Evaluate: int(x^2)/(sqrt(1-x ))dx

int(x+2)sqrt(x^2-1)dx

Find the integral int(sqrt(x)-1/(sqrt(x)))^2dx

Evaluate: int1/(sqrt(x)(sqrt(x)+1))\ dx

The value of int(1)/(x+sqrt(x-1))dx , is

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx