Home
Class 12
MATHS
intsqrt((a+x)/(a-x)) dx...

`intsqrt((a+x)/(a-x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{\frac{a+x}{a-x}} \, dx\), we will use a trigonometric substitution. Let's go through the solution step by step. ### Step 1: Substitution Let \( x = a \cos(2\theta) \). Then, we differentiate both sides to find \(dx\): \[ dx = -2a \sin(2\theta) \, d\theta \] ### Step 2: Substitute in the Integral Now, substitute \(x\) and \(dx\) into the integral: \[ \int \sqrt{\frac{a + a \cos(2\theta)}{a - a \cos(2\theta)}} \, (-2a \sin(2\theta) \, d\theta) \] This simplifies to: \[ -2a \int \sqrt{\frac{a(1 + \cos(2\theta))}{a(1 - \cos(2\theta))}} \sin(2\theta) \, d\theta \] Cancelling \(a\) gives: \[ -2a \int \sqrt{\frac{1 + \cos(2\theta)}{1 - \cos(2\theta)}} \sin(2\theta) \, d\theta \] ### Step 3: Simplify the Square Root Using the identity \(1 + \cos(2\theta) = 2\cos^2(\theta)\) and \(1 - \cos(2\theta) = 2\sin^2(\theta)\), we have: \[ \sqrt{\frac{1 + \cos(2\theta)}{1 - \cos(2\theta)}} = \sqrt{\frac{2\cos^2(\theta)}{2\sin^2(\theta)}} = \frac{\cos(\theta)}{\sin(\theta)} = \cot(\theta) \] Thus, the integral becomes: \[ -2a \int \cot(\theta) \sin(2\theta) \, d\theta \] ### Step 4: Simplify \(\sin(2\theta)\) Recall that \(\sin(2\theta) = 2\sin(\theta)\cos(\theta)\): \[ -2a \int \cot(\theta) \cdot 2\sin(\theta)\cos(\theta) \, d\theta = -4a \int \cos(\theta) \, d\theta \] ### Step 5: Integrate The integral of \(\cos(\theta)\) is: \[ -4a \sin(\theta) + C \] ### Step 6: Back Substitute We need to back substitute for \(\theta\). Recall: \[ \cos(2\theta) = \frac{x}{a} \implies 2\theta = \cos^{-1}\left(\frac{x}{a}\right) \implies \theta = \frac{1}{2} \cos^{-1}\left(\frac{x}{a}\right) \] Using the identity \(\sin^2(\theta) + \cos^2(\theta) = 1\): \[ \sin^2(\theta) = 1 - \left(\frac{x}{a}\right)^2 \implies \sin(\theta) = \sqrt{1 - \frac{x^2}{a^2}} \] Thus, substituting back gives: \[ -4a \sqrt{1 - \frac{x^2}{a^2}} + C \] ### Final Answer The final result of the integral is: \[ -4a \sqrt{1 - \frac{x^2}{a^2}} + C \]

To solve the integral \(\int \sqrt{\frac{a+x}{a-x}} \, dx\), we will use a trigonometric substitution. Let's go through the solution step by step. ### Step 1: Substitution Let \( x = a \cos(2\theta) \). Then, we differentiate both sides to find \(dx\): \[ dx = -2a \sin(2\theta) \, d\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

intsqrt((a+x)/(x-a))dx

intsqrt((x-a)/(b-x))dx

Evaluate: intsqrt((1-x)/(1+x))\ dx

Evaluate: intsqrt((a+x)/x)\ dx

Evaluate: intsqrt((x-3)(5-x))\ dx

intsqrt((1-x)/(1+x))dx

Evaluate intsqrt((a-x)/x)dx

intsqrt((x-3)/(x-4))dx

Evaluate intsqrt(x/(1-x))dx

intsqrt((x+1)/(x-1))dx