Home
Class 12
MATHS
Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx...

Evaluate: `int(x^(1//2))/(1+x^(3//4))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^{1/2}}{1 + x^{3/4}} \, dx, \] we will use a substitution method. Let's follow the steps: ### Step 1: Substitute \( x = t^4 \) We start by letting \( x = t^4 \). Then, we differentiate both sides to find \( dx \): \[ dx = 4t^3 \, dt. \] ### Step 2: Rewrite the integral in terms of \( t \) Now, we can rewrite the integral \( I \): \[ I = \int \frac{(t^4)^{1/2}}{1 + (t^4)^{3/4}} \cdot 4t^3 \, dt. \] This simplifies to: \[ I = \int \frac{t^2}{1 + t^3} \cdot 4t^3 \, dt = 4 \int \frac{t^5}{1 + t^3} \, dt. \] ### Step 3: Simplify the integrand Next, we can simplify the integrand: \[ I = 4 \int \frac{t^5}{1 + t^3} \, dt. \] We can divide \( t^5 \) by \( 1 + t^3 \): \[ t^5 = t^3(1 + t^3) - t^3, \] which gives us: \[ \frac{t^5}{1 + t^3} = t^3 - \frac{t^3}{1 + t^3}. \] ### Step 4: Split the integral Now we can split the integral: \[ I = 4 \left( \int t^3 \, dt - \int \frac{t^3}{1 + t^3} \, dt \right). \] ### Step 5: Evaluate the first integral The first integral is straightforward: \[ \int t^3 \, dt = \frac{t^4}{4}. \] ### Step 6: Evaluate the second integral For the second integral, we can use the substitution \( u = 1 + t^3 \), which gives us \( du = 3t^2 \, dt \) or \( dt = \frac{du}{3t^2} \). We also have \( t^2 = (u - 1)^{2/3} \). Thus, we can rewrite the integral as: \[ \int \frac{t^3}{1 + t^3} \, dt = \int \frac{t^3}{u} \cdot \frac{du}{3t^2} = \frac{1}{3} \int \frac{t}{u} \, du. \] ### Step 7: Combine results Now we combine the results: \[ I = 4 \left( \frac{t^4}{4} - \frac{1}{3} \int \frac{t}{u} \, du \right). \] ### Step 8: Substitute back to \( x \) Finally, we substitute back \( t = x^{1/4} \) to express the integral in terms of \( x \). ### Final Result After evaluating the integrals and simplifying, we arrive at the final expression for the integral: \[ I = \frac{4}{3} \left( x^{3/4} - \log(1 + x^{3/4}) \right) + C, \] where \( C \) is the constant of integration.

To evaluate the integral \[ I = \int \frac{x^{1/2}}{1 + x^{3/4}} \, dx, \] we will use a substitution method. Let's follow the steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate: int1/(x^(1//2)+x^(1//3))\ dx

Evaluate : int(x(1+x^(2)))/(1+x^(4))dx .

Evaluate: int((x-x^3)^(1/3))/(x^4)dx

Evaluate: int((x-x^3)^(1/3))/(x^4)dx

Evaluate: (i) int1/(x^2(x^4+1)^(3//4))\ dx (ii) int(sin^5x)/(cos^4x)\ dx

Evaluate : int(1+x^2)/(1+x^4)dx

Evaluate : int(1+x^2)/(1+x^4)dx

Evaluate int(1+x^(4))/((1-x^(4))^(3//2))dx.

Evaluate: int(x^4+1)/(x^2+1)dx