Home
Class 12
MATHS
int (dx)/(sqrt(16-9x^(2)))...

`int (dx)/(sqrt(16-9x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sqrt{16 - 9x^2}} \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{\sqrt{16 - 9x^2}} \] ### Step 2: Factor out the coefficient of \(x^2\) Notice that we can factor out the 9 from the expression under the square root: \[ I = \int \frac{dx}{\sqrt{16 - 9x^2}} = \int \frac{dx}{\sqrt{9\left(\frac{16}{9} - x^2\right)}} \] This simplifies to: \[ I = \int \frac{dx}{3\sqrt{\frac{16}{9} - x^2}} = \frac{1}{3} \int \frac{dx}{\sqrt{\frac{16}{9} - x^2}} \] ### Step 3: Rewrite the expression under the square root Next, we rewrite \( \frac{16}{9} \) as \( \left(\frac{4}{3}\right)^2 \): \[ I = \frac{1}{3} \int \frac{dx}{\sqrt{\left(\frac{4}{3}\right)^2 - x^2}} \] ### Step 4: Use the standard integral formula We can now use the standard integral formula: \[ \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C \] where \( a = \frac{4}{3} \). ### Step 5: Apply the formula Applying the formula, we have: \[ I = \frac{1}{3} \sin^{-1}\left(\frac{x}{\frac{4}{3}}\right) + C \] This simplifies to: \[ I = \frac{1}{3} \sin^{-1}\left(\frac{3x}{4}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{\sqrt{16 - 9x^2}} = \frac{1}{3} \sin^{-1}\left(\frac{3x}{4}\right) + C \]

To solve the integral \( \int \frac{dx}{\sqrt{16 - 9x^2}} \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{\sqrt{16 - 9x^2}} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-9x^(2)))

int(dx)/(sqrt(9-25x^(2)))

int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

The value of: int(dx)/(sqrt(a^(2)-x^(2)))

Evaluate : int(1)/(sqrt(1-9x^(2))) " dx "

Evaluate: int(dx)/sqrt(2-6x-9x^(2)) dx

Evaluate: int(e^x)/(sqrt(16-e^(2x))) dx

int(dx)/(sqrt(x-x^(2))) equal is :

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx