Home
Class 12
MATHS
int dt/sqrt[3t-2t^2]...

`int dt/sqrt[3t-2t^2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dt}{\sqrt{3t - 2t^2}} \), we can follow these steps: ### Step 1: Factor out constants We start by rewriting the integral: \[ I = \int \frac{dt}{\sqrt{3t - 2t^2}} = \int \frac{dt}{\sqrt{-2t^2 + 3t}} \] Next, we factor out \(-2\) from the expression inside the square root: \[ I = \int \frac{dt}{\sqrt{-2(t^2 - \frac{3}{2}t)}} = \int \frac{dt}{\sqrt{-2\left(t^2 - \frac{3}{2}t\right)}} \] ### Step 2: Complete the square Now, we complete the square for the quadratic expression inside the square root: \[ t^2 - \frac{3}{2}t = \left(t - \frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^2 \] Thus, we have: \[ I = \int \frac{dt}{\sqrt{-2\left(\left(t - \frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^2\right)}} \] ### Step 3: Simplify the integral Substituting this back into the integral gives: \[ I = \int \frac{dt}{\sqrt{-2\left(t - \frac{3}{4}\right)^2 + \frac{9}{8}}} \] This can be rewritten as: \[ I = \int \frac{dt}{\sqrt{\frac{9}{8} - 2\left(t - \frac{3}{4}\right)^2}} \] ### Step 4: Use trigonometric substitution We can use the substitution \( u = t - \frac{3}{4} \), which gives \( dt = du \): \[ I = \int \frac{du}{\sqrt{\frac{9}{8} - 2u^2}} \] Now, we can factor out constants: \[ I = \int \frac{du}{\sqrt{\frac{9}{8}} \sqrt{1 - \frac{16}{9}u^2}} = \frac{1}{\sqrt{\frac{9}{8}}} \int \frac{du}{\sqrt{1 - \left(\frac{4u}{3}\right)^2}} \] ### Step 5: Evaluate the integral Using the integral formula \( \int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1}(x) + C \): \[ I = \frac{1}{\sqrt{\frac{9}{8}}} \cdot \sin^{-1}\left(\frac{4u}{3}\right) + C \] Substituting back \( u = t - \frac{3}{4} \): \[ I = \frac{1}{\sqrt{\frac{9}{8}}} \cdot \sin^{-1}\left(\frac{4(t - \frac{3}{4})}{3}\right) + C \] ### Step 6: Final simplification Simplifying gives: \[ I = \frac{2\sqrt{2}}{3} \sin^{-1}\left(\frac{4t - 3}{3}\right) + C \] ### Final Answer: \[ I = \frac{2\sqrt{2}}{3} \sin^{-1}\left(\frac{4t - 3}{3}\right) + C \]

To solve the integral \( I = \int \frac{dt}{\sqrt{3t - 2t^2}} \), we can follow these steps: ### Step 1: Factor out constants We start by rewriting the integral: \[ I = \int \frac{dt}{\sqrt{3t - 2t^2}} = \int \frac{dt}{\sqrt{-2t^2 + 3t}} \] Next, we factor out \(-2\) from the expression inside the square root: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

int sqrt(t)dt

int(dt)/( sqrt(t-1))

int(dt)/( sqrt(1-t)-t)

int(dt)/( sqrt(t^(2)-((a+b)/2)^2))

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

I=int sqrt(1-t^(2))dt

int(1)/(sqrt(t))dt

(-1)/(2)int(dt)/(sqrt(1-t)sqrt(t))

(1)/(3)int sqrt(5^(2)-t^(2))dt