Home
Class 12
MATHS
intsqrt(5-2x+x^(2))dx...

`intsqrt(5-2x+x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{5 - 2x + x^2} \, dx\), we will follow a systematic approach. Let's break it down step by step. ### Step 1: Rewrite the Expression First, we need to rewrite the expression under the square root in a more manageable form. The expression \(5 - 2x + x^2\) can be rearranged as follows: \[ x^2 - 2x + 5 = (x^2 - 2x + 1) + 4 = (x - 1)^2 + 4 \] ### Step 2: Substitute into the Integral Now, we can substitute this back into the integral: \[ \int \sqrt{(x - 1)^2 + 4} \, dx \] ### Step 3: Use the Integral Formula We can use the formula for the integral of the form \(\int \sqrt{x^2 + a^2} \, dx\), which is: \[ \int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln\left| x + \sqrt{x^2 + a^2} \right| + C \] In our case, we have \(x\) as \(x - 1\) and \(a = 2\). Therefore, we will apply the formula accordingly. ### Step 4: Apply the Formula Substituting \(x - 1\) for \(x\) in the formula: \[ \int \sqrt{(x - 1)^2 + 4} \, dx = \frac{x - 1}{2} \sqrt{(x - 1)^2 + 4} + \frac{4}{2} \ln\left| (x - 1) + \sqrt{(x - 1)^2 + 4} \right| + C \] ### Step 5: Simplify the Expression Now, simplifying the expression: \[ = \frac{x - 1}{2} \sqrt{(x - 1)^2 + 4} + 2 \ln\left| (x - 1) + \sqrt{(x - 1)^2 + 4} \right| + C \] ### Final Result Thus, the final result for the integral \(\int \sqrt{5 - 2x + x^2} \, dx\) is: \[ \frac{x - 1}{2} \sqrt{(x - 1)^2 + 4} + 2 \ln\left| (x - 1) + \sqrt{(x - 1)^2 + 4} \right| + C \]

To solve the integral \(\int \sqrt{5 - 2x + x^2} \, dx\), we will follow a systematic approach. Let's break it down step by step. ### Step 1: Rewrite the Expression First, we need to rewrite the expression under the square root in a more manageable form. The expression \(5 - 2x + x^2\) can be rearranged as follows: \[ x^2 - 2x + 5 = (x^2 - 2x + 1) + 4 = (x - 1)^2 + 4 \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsqrt(2-x-x^(2)) dx

Evaluate: intsqrt(3-2x-2x^2)dx

Find intsqrt(3-2x-x^2)dx

Evaluate: intsqrt(3-2x-x^2)dx

Evaluate : intsqrt(4-x-x^(2))dx .

intsqrt(a^(2)-x^(2))dx

intsqrt(x^(2)+4x+1)dx

Evaluate: intsqrt (1-x^2)dx

Evaluate: intsqrt(9-x^2)dx

Evaluate intsqrt (4-x^2)dx