Home
Class 12
MATHS
int \ x/(x^4-1)dx...

`int \ x/(x^4-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x}{x^4 - 1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x}{x^4 - 1} \, dx \] We can factor the denominator: \[ x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \] Thus, we rewrite the integral as: \[ I = \int \frac{x}{(x - 1)(x + 1)(x^2 + 1)} \, dx \] ### Step 2: Use Substitution We will use the substitution \( t = x^2 \). Then, we have: \[ dt = 2x \, dx \quad \Rightarrow \quad x \, dx = \frac{dt}{2} \] Substituting into the integral gives: \[ I = \int \frac{1}{(t - 1)(t + 1)(t + 1)} \cdot \frac{dt}{2} \] This simplifies to: \[ I = \frac{1}{2} \int \frac{1}{(t - 1)(t + 1)(t + 1)} \, dt \] ### Step 3: Partial Fraction Decomposition Next, we perform partial fraction decomposition on: \[ \frac{1}{(t - 1)(t + 1)(t + 1)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{(t + 1)^2} \] Multiplying through by the denominator \( (t - 1)(t + 1)^2 \) gives: \[ 1 = A(t + 1)^2 + B(t - 1)(t + 1) + C(t - 1) \] Expanding and solving for \( A, B, C \) leads to a system of equations. ### Step 4: Solve for Coefficients By substituting suitable values for \( t \) (like \( t = 1 \), \( t = -1 \), etc.), we can solve for \( A, B, C \). ### Step 5: Integrate Each Term After finding \( A, B, C \), we can integrate each term separately: \[ \int \frac{A}{t - 1} \, dt, \quad \int \frac{B}{t + 1} \, dt, \quad \int \frac{C}{(t + 1)^2} \, dt \] ### Step 6: Substitute Back After integrating, substitute back \( t = x^2 \) to express the result in terms of \( x \). ### Final Result The final result of the integral will be of the form: \[ \frac{1}{4} \log\left|\frac{x^2 - 1}{x^2 + 1}\right| + C \] where \( C \) is the constant of integration. ---

To solve the integral \( \int \frac{x}{x^4 - 1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x}{x^4 - 1} \, dx \] We can factor the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(x^4-1)dx

int(x^2)/(1-x^4)dx

Evaluate: int(x^4)/(x^2+1)dx

Evaluate: int_2^4x/(x^2+1)dx

Evaluate each of the following integral: int_2^4x/(x^2+1)dx

Evaluate the following integral: int_2^4x/(x^2+1)dx

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(x^4+1)dx

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int(x^2+1)/(x^4+1)dx