Home
Class 12
MATHS
int(x^2)/(1-x^4)dx...

`int(x^2)/(1-x^4)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x^2}{1 - x^4} \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We start with: \[ I = \int \frac{x^2}{1 - x^4} \, dx \] To simplify, we can multiply the numerator and the denominator by 2: \[ I = \frac{1}{2} \int \frac{2x^2}{1 - x^4} \, dx \] ### Step 2: Rewrite the Numerator Next, we can express \( 2x^2 \) as: \[ 2x^2 = (1 + x^2) - (1 - x^2) \] Thus, we can rewrite the integral: \[ I = \frac{1}{2} \int \frac{(1 + x^2) - (1 - x^2)}{1 - x^4} \, dx \] This separates into two integrals: \[ I = \frac{1}{2} \left( \int \frac{1 + x^2}{1 - x^4} \, dx - \int \frac{1 - x^2}{1 - x^4} \, dx \right) \] ### Step 3: Factor the Denominator We can factor \( 1 - x^4 \) as: \[ 1 - x^4 = (1 - x^2)(1 + x^2) \] Now we can rewrite the integrals: \[ I = \frac{1}{2} \left( \int \frac{1 + x^2}{(1 - x^2)(1 + x^2)} \, dx - \int \frac{1 - x^2}{(1 - x^2)(1 + x^2)} \, dx \right) \] This simplifies to: \[ I = \frac{1}{2} \left( \int \frac{1}{1 - x^2} \, dx - \int \frac{1}{1 + x^2} \, dx \right) \] ### Step 4: Integrate Each Term Now we can integrate each term: 1. The integral \( \int \frac{1}{1 - x^2} \, dx \) can be solved using partial fractions: \[ \int \frac{1}{1 - x^2} \, dx = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C_1 \] 2. The integral \( \int \frac{1}{1 + x^2} \, dx \) is: \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) + C_2 \] ### Step 5: Combine the Results Putting it all together, we have: \[ I = \frac{1}{2} \left( \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| - \tan^{-1}(x) \right) + C \] Thus, simplifying gives: \[ I = \frac{1}{4} \ln \left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{-1}(x) + C \] ### Final Answer Therefore, the final result is: \[ I = \frac{1}{4} \ln \left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{-1}(x) + C \]

To solve the integral \( I = \int \frac{x^2}{1 - x^4} \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We start with: \[ I = \int \frac{x^2}{1 - x^4} \, dx \] To simplify, we can multiply the numerator and the denominator by 2: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(1+x^2)/(1+x^4)dx

Evaluate : int(1+x^2)/(1+x^4)dx

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int(x^2-1)/(x^2+4)dx

Evaluate: int(x^2)/(x^4+1)\ dx

Evaluate: int(3x)/(1+2x^4)dx

Evaluate: int(sqrt(1+x^2))/(x^4)dx

int(sqrt(x^2+1))/(x^4)dx=

int(sqrt(1+x^2))/(x^4) dx