To evaluate the integral \(\int \sqrt{2ax - x^2} \, dx\), we can follow these steps:
### Step 1: Rewrite the integrand
We start by rewriting the expression under the square root:
\[
\sqrt{2ax - x^2} = \sqrt{-(x^2 - 2ax)} = \sqrt{-(x^2 - 2ax + a^2 - a^2)} = \sqrt{a^2 - (x - a)^2}
\]
This transformation allows us to express the integrand in a more manageable form.
### Step 2: Set up the integral
Now we can rewrite the integral:
\[
I = \int \sqrt{a^2 - (x - a)^2} \, dx
\]
### Step 3: Use substitution
Let \(t = x - a\). Then, \(dx = dt\) and the limits of integration remain the same since we are not changing the bounds. The integral now becomes:
\[
I = \int \sqrt{a^2 - t^2} \, dt
\]
### Step 4: Apply the integral formula
The integral \(\int \sqrt{a^2 - t^2} \, dt\) can be evaluated using the formula:
\[
\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C
\]
Applying this formula to our integral:
\[
I = \frac{t}{2} \sqrt{a^2 - t^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{t}{a}\right) + C
\]
### Step 5: Substitute back
Now, we substitute back \(t = x - a\):
\[
I = \frac{x - a}{2} \sqrt{a^2 - (x - a)^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x - a}{a}\right) + C
\]
### Final Answer
Thus, the final result of the integral is:
\[
I = \frac{x - a}{2} \sqrt{a^2 - (x - a)^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x - a}{a}\right) + C
\]
To evaluate the integral \(\int \sqrt{2ax - x^2} \, dx\), we can follow these steps:
### Step 1: Rewrite the integrand
We start by rewriting the expression under the square root:
\[
\sqrt{2ax - x^2} = \sqrt{-(x^2 - 2ax)} = \sqrt{-(x^2 - 2ax + a^2 - a^2)} = \sqrt{a^2 - (x - a)^2}
\]
This transformation allows us to express the integrand in a more manageable form.
...
Topper's Solved these Questions
INTEGRALS
NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos