Home
Class 12
MATHS
Evaluate: intsqrt(2a x-x^2)\ dx...

Evaluate: `intsqrt(2a x-x^2)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \sqrt{2ax - x^2} \, dx\), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the expression under the square root: \[ \sqrt{2ax - x^2} = \sqrt{-(x^2 - 2ax)} = \sqrt{-(x^2 - 2ax + a^2 - a^2)} = \sqrt{a^2 - (x - a)^2} \] This transformation allows us to express the integrand in a more manageable form. ### Step 2: Set up the integral Now we can rewrite the integral: \[ I = \int \sqrt{a^2 - (x - a)^2} \, dx \] ### Step 3: Use substitution Let \(t = x - a\). Then, \(dx = dt\) and the limits of integration remain the same since we are not changing the bounds. The integral now becomes: \[ I = \int \sqrt{a^2 - t^2} \, dt \] ### Step 4: Apply the integral formula The integral \(\int \sqrt{a^2 - t^2} \, dt\) can be evaluated using the formula: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C \] Applying this formula to our integral: \[ I = \frac{t}{2} \sqrt{a^2 - t^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{t}{a}\right) + C \] ### Step 5: Substitute back Now, we substitute back \(t = x - a\): \[ I = \frac{x - a}{2} \sqrt{a^2 - (x - a)^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x - a}{a}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{x - a}{2} \sqrt{a^2 - (x - a)^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x - a}{a}\right) + C \]

To evaluate the integral \(\int \sqrt{2ax - x^2} \, dx\), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the expression under the square root: \[ \sqrt{2ax - x^2} = \sqrt{-(x^2 - 2ax)} = \sqrt{-(x^2 - 2ax + a^2 - a^2)} = \sqrt{a^2 - (x - a)^2} \] This transformation allows us to express the integrand in a more manageable form. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsqrt(1+2x-3x^2)\ dx

Evaluate: intsqrt(3+2x-x^2)\ dx

Evaluate: intsqrt(7x-10-x^2)\ dx

Evaluate: intsqrt(2-x-x^(2)) dx

Evaluate: intsqrt(1+x-2x^2)\ dx

Evaluate: intsqrt(a^2-x^2)\ dx

Evaluate: intsqrt(3-2x-x^2)dx

Evaluate: intsqrt(2x^2+3x+4)\ dx

Evaluate: intsqrt(3-2x-2x^2)dx

Evaluate: intsqrt(a^2+x^2)\ dx