Home
Class 12
MATHS
int (cos 5x + cos 4x)/(1-2cos3x) dx...

`int (cos 5x + cos 4x)/(1-2cos3x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} \, dx \), we will follow these steps: ### Step 1: Simplify the Numerator We can use the cosine addition formula: \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] Here, let \( a = 5x \) and \( b = 4x \). Then, \[ \cos 5x + \cos 4x = 2 \cos\left(\frac{5x + 4x}{2}\right) \cos\left(\frac{5x - 4x}{2}\right) = 2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ I = \int \frac{2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right)}{1 - 2\cos 3x} \, dx \] ### Step 2: Simplify the Denominator Next, we can rewrite the denominator \( 1 - 2\cos 3x \). We can multiply both the numerator and the denominator by \( \sin 3x \): \[ I = \int \frac{2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right) \sin 3x}{\sin 3x(1 - 2\cos 3x)} \, dx \] ### Step 3: Use the Identity for Sine Using the identity \( 2 \sin A \cos A = \sin(2A) \), we can express \( 2 \sin 3x \cos 3x \) as: \[ 2 \sin 3x \cos 3x = \sin 6x \] Thus, we can rewrite the denominator: \[ 1 - 2\cos 3x = \frac{\sin 3x - \sin 6x}{\sin 3x} \] Now, substituting this back, we have: \[ I = \int \frac{2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right) \sin 3x}{\sin 3x - \sin 6x} \, dx \] ### Step 4: Apply the Sine Difference Formula Using the sine difference formula: \[ \sin c - \sin d = 2 \cos\left(\frac{c+d}{2}\right) \sin\left(\frac{c-d}{2}\right) \] Let \( c = 6x \) and \( d = 3x \): \[ \sin 6x - \sin 3x = 2 \cos\left(\frac{6x + 3x}{2}\right) \sin\left(\frac{6x - 3x}{2}\right) = 2 \cos\left(\frac{9x}{2}\right) \sin\left(\frac{3x}{2}\right) \] Thus, we can substitute this back into our integral: \[ I = \int \frac{2 \cos\left(\frac{9x}{2}\right) \cos\left(\frac{x}{2}\right) \sin 3x}{2 \cos\left(\frac{9x}{2}\right) \sin\left(\frac{3x}{2}\right)} \, dx \] This simplifies to: \[ I = \int \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{3x}{2}\right)} \, dx \] ### Step 5: Integrate Now, we can integrate: \[ I = \int \cot\left(\frac{3x}{2}\right) \cos\left(\frac{x}{2}\right) \, dx \] Using substitution and integration techniques, we can find the integral: \[ I = -\frac{1}{2} \sin(2x) - \sin x + C \] ### Final Answer Thus, the final answer is: \[ I = -\frac{1}{2} \sin(2x) - \sin x + C \] ---

To solve the integral \( I = \int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} \, dx \), we will follow these steps: ### Step 1: Simplify the Numerator We can use the cosine addition formula: \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] Here, let \( a = 5x \) and \( b = 4x \). Then, ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

The value of int (cos 8x-cos 7x)/(1+2 cos 5x)dx , is

If int(cos 6x+cos 9x)/(1-2 cos 5x)dx=-(sin 4x)/(k)-sin x+C , then the value of k is .......... .

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)

int cos 4x. cos 2x dx

int cos^4 x dx

To prove (cos5x+cos4x)/(1-2cos3x) = -cos2x-cosx

int (1-cosx) /(cos x(1+cos x)) dx