Home
Class 12
MATHS
int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2...

`int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx, \] we can start by rewriting the numerator using the identity for the sum of cubes. ### Step 1: Rewrite the numerator We can express \(\sin^6 x + \cos^6 x\) as follows: \[ \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3. \] Using the sum of cubes formula \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\), we have: \[ \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)\left((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2\right). \] Since \(\sin^2 x + \cos^2 x = 1\), we can simplify this to: \[ \sin^6 x + \cos^6 x = 1 \cdot \left(\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x\right). \] ### Step 2: Substitute back into the integral Now substituting this back into the integral, we get: \[ I = \int \frac{\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx. \] This can be separated into three integrals: \[ I = \int \frac{\sin^4 x}{\sin^2 x \cos^2 x} \, dx + \int \frac{\cos^4 x}{\sin^2 x \cos^2 x} \, dx - \int \frac{\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx. \] ### Step 3: Simplify each term Now we simplify each integral: 1. The first integral becomes: \[ \int \frac{\sin^4 x}{\sin^2 x \cos^2 x} \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \tan^2 x \, dx. \] 2. The second integral becomes: \[ \int \frac{\cos^4 x}{\sin^2 x \cos^2 x} \, dx = \int \frac{\cos^2 x}{\sin^2 x} \, dx = \int \cot^2 x \, dx. \] 3. The third integral simplifies to: \[ \int 1 \, dx = x. \] ### Step 4: Integrate each term Now we can integrate each term: 1. For \(\int \tan^2 x \, dx\): \[ \tan^2 x = \sec^2 x - 1 \implies \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x. \] 2. For \(\int \cot^2 x \, dx\): \[ \cot^2 x = \csc^2 x - 1 \implies \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = -\cot x - x. \] 3. For \(\int 1 \, dx\): \[ \int 1 \, dx = x. \] ### Step 5: Combine the results Now, putting everything together, we have: \[ I = \left(\tan x - x\right) + \left(-\cot x - x\right) - x. \] Combining the terms gives: \[ I = \tan x - \cot x - 3x + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result is: \[ I = \tan x - \cot x - 3x + C. \]

To solve the integral \[ I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx, \] we can start by rewriting the numerator using the identity for the sum of cubes. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

3. int(dx)/(sin^(2)x+cos^(2)x)

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

Evaluate: int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)\ dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

int(sin2x)/(cos2x)dx