To solve the integral
\[
I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx,
\]
we can start by rewriting the numerator using the identity for the sum of cubes.
### Step 1: Rewrite the numerator
We can express \(\sin^6 x + \cos^6 x\) as follows:
\[
\sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3.
\]
Using the sum of cubes formula \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\), we have:
\[
\sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)\left((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2\right).
\]
Since \(\sin^2 x + \cos^2 x = 1\), we can simplify this to:
\[
\sin^6 x + \cos^6 x = 1 \cdot \left(\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x\right).
\]
### Step 2: Substitute back into the integral
Now substituting this back into the integral, we get:
\[
I = \int \frac{\sin^4 x + \cos^4 x - \sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx.
\]
This can be separated into three integrals:
\[
I = \int \frac{\sin^4 x}{\sin^2 x \cos^2 x} \, dx + \int \frac{\cos^4 x}{\sin^2 x \cos^2 x} \, dx - \int \frac{\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx.
\]
### Step 3: Simplify each term
Now we simplify each integral:
1. The first integral becomes:
\[
\int \frac{\sin^4 x}{\sin^2 x \cos^2 x} \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \tan^2 x \, dx.
\]
2. The second integral becomes:
\[
\int \frac{\cos^4 x}{\sin^2 x \cos^2 x} \, dx = \int \frac{\cos^2 x}{\sin^2 x} \, dx = \int \cot^2 x \, dx.
\]
3. The third integral simplifies to:
\[
\int 1 \, dx = x.
\]
### Step 4: Integrate each term
Now we can integrate each term:
1. For \(\int \tan^2 x \, dx\):
\[
\tan^2 x = \sec^2 x - 1 \implies \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x.
\]
2. For \(\int \cot^2 x \, dx\):
\[
\cot^2 x = \csc^2 x - 1 \implies \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = -\cot x - x.
\]
3. For \(\int 1 \, dx\):
\[
\int 1 \, dx = x.
\]
### Step 5: Combine the results
Now, putting everything together, we have:
\[
I = \left(\tan x - x\right) + \left(-\cot x - x\right) - x.
\]
Combining the terms gives:
\[
I = \tan x - \cot x - 3x + C,
\]
where \(C\) is the constant of integration.
### Final Answer
Thus, the final result is:
\[
I = \tan x - \cot x - 3x + C.
\]