Home
Class 12
MATHS
Find int sqrtx/sqrt(a^3-x^3) dx...

Find `int sqrtx/sqrt(a^3-x^3) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx = \int \frac{\sqrt{x}}{(a^{3/2} - x^{3/2})} \, dx \] ### Step 2: Substitution Let us make the substitution \( x^{3/2} = t \). Then, differentiating both sides gives: \[ \frac{3}{2} x^{1/2} \, dx = dt \quad \Rightarrow \quad dx = \frac{2}{3} \frac{dt}{\sqrt{x}} = \frac{2}{3} \frac{dt}{\sqrt{t^{2/3}}} = \frac{2}{3} \frac{dt}{t^{1/3}} \] ### Step 3: Substitute in the Integral Now substitute \( x^{3/2} = t \) into the integral: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx = \int \frac{\sqrt{t^{2/3}}}{\sqrt{a^3 - t}} \cdot \frac{2}{3} \frac{dt}{t^{1/3}} = \int \frac{2}{3} \frac{t^{1/3}}{\sqrt{a^3 - t}} \, dt \] ### Step 4: Simplify the Integral The integral now becomes: \[ \frac{2}{3} \int \frac{t^{1/3}}{\sqrt{a^3 - t}} \, dt \] ### Step 5: Use a Standard Integral Formula We can recognize that the integral \( \int \frac{x^n}{\sqrt{a^2 - x^2}} \, dx \) can be solved using standard integral formulas. In our case, we can use the formula: \[ \int \frac{x^n}{\sqrt{a^2 - x^2}} \, dx = \frac{x^{n+1}}{n+1} \sqrt{a^2 - x^2} + \frac{a^2}{n+1} \int \frac{x^n}{\sqrt{a^2 - x^2}} \, dx \] However, for our specific case, we can directly apply the result for \( n = \frac{1}{3} \). ### Step 6: Solve the Integral Using the formula, we find: \[ \int \frac{t^{1/3}}{\sqrt{a^3 - t}} \, dt = \frac{2}{3} \cdot \sin^{-1}\left(\frac{t^{3/2}}{a^{3/2}}\right) + C \] ### Step 7: Back Substitute Now we substitute back \( t = x^{3/2} \): \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx = \frac{2}{3} \sin^{-1}\left(\frac{x^{3/2}}{a^{3/2}}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx = \frac{2}{3} \sin^{-1}\left(\frac{x^{3/2}}{a^{3/2}}\right) + C \]

To solve the integral \( \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx = \int \frac{\sqrt{x}}{(a^{3/2} - x^{3/2})} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Find : int(sqrt(x))/(sqrt(a^3-x^3))dxdot

Evaluate : int( sqrtx)/sqrt( a^(3) - x^(3) ) dx

Find int (dx)/sqrt(3-2x-x^2)

Evaluate the following integrals int sqrt((x)/(a^(3)-x^(3)))dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

The value of int e^sqrtx/sqrtx(sqrtx + x) dx is equal to

Find : int(3x+1)sqrt(4-3x-2x^2)dx

Evaluate: int1/(sqrt(1-2x)+sqrt(3-2x))\ dx

int (1/sqrtx-sqrtx)dx