Home
Class 12
MATHS
int (cosx-cos2x)/(1-cosx) dx...

`int (cosx-cos2x)/(1-cosx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos x - \cos 2x}{1 - \cos x} \, dx \), we will follow these steps: ### Step 1: Use the double angle formula We know that \( \cos 2x = 2 \cos^2 x - 1 \). We can substitute this into our integral: \[ \int \frac{\cos x - (2 \cos^2 x - 1)}{1 - \cos x} \, dx \] ### Step 2: Simplify the expression Now, simplify the numerator: \[ \cos x - (2 \cos^2 x - 1) = \cos x - 2 \cos^2 x + 1 \] Thus, the integral becomes: \[ \int \frac{\cos x - 2 \cos^2 x + 1}{1 - \cos x} \, dx \] ### Step 3: Factor out terms We can factor out \(-1\) from the numerator: \[ = \int \frac{-(2 \cos^2 x - \cos x - 1)}{1 - \cos x} \, dx \] ### Step 4: Rewrite the numerator We can rewrite the numerator \(2 \cos^2 x - \cos x - 1\) as: \[ = 2 \cos^2 x - \cos x - 1 = 2 \cos x (\cos x - 1) + (\cos x - 1) \] So we can factor it as: \[ = (2 \cos x + 1)(\cos x - 1) \] ### Step 5: Substitute back into the integral Now substituting this back into the integral gives: \[ = \int \frac{(2 \cos x + 1)(\cos x - 1)}{1 - \cos x} \, dx \] ### Step 6: Cancel terms The \( \cos x - 1 \) in the numerator and \( 1 - \cos x \) in the denominator can be simplified. Remember \( 1 - \cos x = -(\cos x - 1) \): \[ = \int -(2 \cos x + 1) \, dx \] ### Step 7: Integrate term by term Now we can integrate: \[ = -\int (2 \cos x + 1) \, dx = -\left(2 \sin x + x\right) + C \] ### Final Result Thus, the final result of the integral is: \[ = -2 \sin x - x + C \] ---

To solve the integral \( \int \frac{\cos x - \cos 2x}{1 - \cos x} \, dx \), we will follow these steps: ### Step 1: Use the double angle formula We know that \( \cos 2x = 2 \cos^2 x - 1 \). We can substitute this into our integral: \[ \int \frac{\cos x - (2 \cos^2 x - 1)}{1 - \cos x} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int ((1+cosx)/(1-cosx)) dx

int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

int(1-cosx)/(cosx(1+cosx))dx

int(1-cosx)/(cosx(1+cosx))dx

int(1-cosx)/(1+cosx)\ dx

int(1+cosx)/(1-cosx)\ dx

Evaluate the following integrals: int frac{cosx-cos2x}{1-cosx}dx

int(x-sinx)/(1-cosx)dx

int(x-sinx)/(1-cosx)dx

Evaluate: int(sinx+cosx)/(sinx-cosx)dx