To solve the integral \( \int \frac{\cos x - \cos 2x}{1 - \cos x} \, dx \), we will follow these steps:
### Step 1: Use the double angle formula
We know that \( \cos 2x = 2 \cos^2 x - 1 \). We can substitute this into our integral:
\[
\int \frac{\cos x - (2 \cos^2 x - 1)}{1 - \cos x} \, dx
\]
### Step 2: Simplify the expression
Now, simplify the numerator:
\[
\cos x - (2 \cos^2 x - 1) = \cos x - 2 \cos^2 x + 1
\]
Thus, the integral becomes:
\[
\int \frac{\cos x - 2 \cos^2 x + 1}{1 - \cos x} \, dx
\]
### Step 3: Factor out terms
We can factor out \(-1\) from the numerator:
\[
= \int \frac{-(2 \cos^2 x - \cos x - 1)}{1 - \cos x} \, dx
\]
### Step 4: Rewrite the numerator
We can rewrite the numerator \(2 \cos^2 x - \cos x - 1\) as:
\[
= 2 \cos^2 x - \cos x - 1 = 2 \cos x (\cos x - 1) + (\cos x - 1)
\]
So we can factor it as:
\[
= (2 \cos x + 1)(\cos x - 1)
\]
### Step 5: Substitute back into the integral
Now substituting this back into the integral gives:
\[
= \int \frac{(2 \cos x + 1)(\cos x - 1)}{1 - \cos x} \, dx
\]
### Step 6: Cancel terms
The \( \cos x - 1 \) in the numerator and \( 1 - \cos x \) in the denominator can be simplified. Remember \( 1 - \cos x = -(\cos x - 1) \):
\[
= \int -(2 \cos x + 1) \, dx
\]
### Step 7: Integrate term by term
Now we can integrate:
\[
= -\int (2 \cos x + 1) \, dx = -\left(2 \sin x + x\right) + C
\]
### Final Result
Thus, the final result of the integral is:
\[
= -2 \sin x - x + C
\]
---
To solve the integral \( \int \frac{\cos x - \cos 2x}{1 - \cos x} \, dx \), we will follow these steps:
### Step 1: Use the double angle formula
We know that \( \cos 2x = 2 \cos^2 x - 1 \). We can substitute this into our integral:
\[
\int \frac{\cos x - (2 \cos^2 x - 1)}{1 - \cos x} \, dx
\]
...
Topper's Solved these Questions
INTEGRALS
NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos