Home
Class 12
MATHS
int 1/(xsqrt(x^4-1))dx...

`int 1/(xsqrt(x^4-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x \sqrt{x^4 - 1}} \, dx \), we will use a trigonometric substitution. Here are the steps to find the solution: ### Step 1: Substitution Let \( x^2 = \sec \theta \). Then, differentiating both sides gives: \[ 2x \, dx = \sec \theta \tan \theta \, d\theta \] From this, we can express \( dx \) as: \[ dx = \frac{\sec \theta \tan \theta}{2x} \, d\theta \] Since \( x = \sqrt{\sec \theta} \), we can substitute \( x \) back into the equation: \[ dx = \frac{\sec \theta \tan \theta}{2\sqrt{\sec \theta}} \, d\theta = \frac{\sec^{1/2} \theta \tan \theta}{2} \, d\theta \] ### Step 2: Rewrite the Integral Now, we need to rewrite the integral in terms of \( \theta \): \[ \int \frac{1}{x \sqrt{x^4 - 1}} \, dx = \int \frac{1}{\sqrt{\sec \theta} \sqrt{\sec^2 \theta - 1}} \cdot \frac{\sec^{1/2} \theta \tan \theta}{2} \, d\theta \] Since \( \sec^2 \theta - 1 = \tan^2 \theta \), we have: \[ \sqrt{\sec^2 \theta - 1} = \tan \theta \] Thus, the integral simplifies to: \[ \int \frac{1}{\sqrt{\sec \theta} \cdot \tan \theta} \cdot \frac{\sec^{1/2} \theta \tan \theta}{2} \, d\theta = \int \frac{1}{2} \, d\theta \] ### Step 3: Integrate Now we can integrate: \[ \int \frac{1}{2} \, d\theta = \frac{1}{2} \theta + C \] ### Step 4: Back Substitute We need to substitute back for \( \theta \). Recall that \( x^2 = \sec \theta \), so: \[ \theta = \sec^{-1}(x^2) \] Thus, the final result is: \[ \int \frac{1}{x \sqrt{x^4 - 1}} \, dx = \frac{1}{2} \sec^{-1}(x^2) + C \] ### Final Answer \[ \int \frac{1}{x \sqrt{x^4 - 1}} \, dx = \frac{1}{2} \sec^{-1}(x^2) + C \]

To solve the integral \( \int \frac{1}{x \sqrt{x^4 - 1}} \, dx \), we will use a trigonometric substitution. Here are the steps to find the solution: ### Step 1: Substitution Let \( x^2 = \sec \theta \). Then, differentiating both sides gives: \[ 2x \, dx = \sec \theta \tan \theta \, d\theta \] From this, we can express \( dx \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(xsqrt(x^2-1))dx

Evaluate: int1/(xsqrt((x^6+1)))dx

int (1)/(xsqrt(x))dx

Evaluate the following indefinite integrals : (i) intsqrt(a^(2)-x^(2))dx (ii) int(1)/(sqrt(49+x^(2)))dx (iii) int(1)/(xsqrt(x^(6)-1))dx (iv) intsqrt((1+x)/(1-x))dx (v) intsqrt((x^(2009))/(2x^(2008)-x^(2009)))dx (vi) int(1)/(sqrt((x-4)(x-5)))dx

Evaluate : int(dx)/(xsqrt(x^4-1))

Evaluate: int1/(xsqrt(1+x^3))\ dx

int xsqrt(x^(4)+9) dx

Evaluate: int 1/\x 1/sqrt(x^4-1)\ dx

Evaluate: int_0^4 1/(x+sqrt(x))dx (ii) int_0^1(2x)/(5x^2+1)dx

intlog(sec^-1x)/(xsqrt(x^2-1))dx