Home
Class 12
MATHS
Evaluate int0^2(x^2+3) dx as limit of s...

Evaluate `int_0^2(x^2+3) dx` as limit of sums.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^2 (x^2 + 3) \, dx \) as a limit of sums, we will follow these steps: ### Step 1: Set up the integral as a limit of sums The definite integral can be expressed as: \[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{r=0}^{n-1} f(a + r \cdot h) \cdot h \] where \( h = \frac{b - a}{n} \). For our integral: - \( a = 0 \) - \( b = 2 \) - \( f(x) = x^2 + 3 \) Thus, we have: \[ h = \frac{2 - 0}{n} = \frac{2}{n} \] ### Step 2: Substitute into the limit of sums Now, substituting into the limit of sums: \[ \int_0^2 (x^2 + 3) \, dx = \lim_{n \to \infty} \sum_{r=0}^{n-1} \left( (0 + r \cdot h)^2 + 3 \right) \cdot h \] Substituting \( h = \frac{2}{n} \): \[ = \lim_{n \to \infty} \sum_{r=0}^{n-1} \left( \left( r \cdot \frac{2}{n} \right)^2 + 3 \right) \cdot \frac{2}{n} \] ### Step 3: Simplify the expression Now, simplifying the expression inside the summation: \[ = \lim_{n \to \infty} \sum_{r=0}^{n-1} \left( \frac{4r^2}{n^2} + 3 \right) \cdot \frac{2}{n} \] \[ = \lim_{n \to \infty} \sum_{r=0}^{n-1} \left( \frac{8r^2}{n^3} + \frac{6}{n} \right) \] This can be separated into two sums: \[ = \lim_{n \to \infty} \left( \frac{8}{n^3} \sum_{r=0}^{n-1} r^2 + \frac{6}{n} \sum_{r=0}^{n-1} 1 \right) \] ### Step 4: Calculate the sums Using the formula for the sum of squares: \[ \sum_{r=0}^{n-1} r^2 = \frac{(n-1)n(2n-1)}{6} \] And the sum of ones: \[ \sum_{r=0}^{n-1} 1 = n \] Substituting these into our expression: \[ = \lim_{n \to \infty} \left( \frac{8}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} + \frac{6}{n} \cdot n \right) \] \[ = \lim_{n \to \infty} \left( \frac{8(n-1)(2n-1)}{6n} + 6 \right) \] ### Step 5: Simplify further As \( n \to \infty \): \[ \frac{8(n-1)(2n-1)}{6n} \approx \frac{8 \cdot 2n^2}{6n} = \frac{16n}{6} = \frac{8n}{3} \] Thus, we have: \[ = \lim_{n \to \infty} \left( \frac{8n}{3} + 6 \right) = \frac{8}{3} \cdot 2 + 6 = \frac{16}{3} + 6 = \frac{16 + 18}{3} = \frac{34}{3} \] ### Final Result Thus, the value of the integral is: \[ \int_0^2 (x^2 + 3) \, dx = \frac{34}{3} \]

To evaluate the integral \( \int_0^2 (x^2 + 3) \, dx \) as a limit of sums, we will follow these steps: ### Step 1: Set up the integral as a limit of sums The definite integral can be expressed as: \[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{r=0}^{n-1} f(a + r \cdot h) \cdot h \] where \( h = \frac{b - a}{n} \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^2(x^2+2)dx

Evaluate int_1^4(x^2-\ x)\ dx as a limit of sums.

Evaluate int_1^4(x^2-\ x)\ dx as a limit of sums.

Evaluate int_a^b x^2 dx as limit of the sum.

Evaluate: int_1^3(2x^2+5x)dx as limit of a sum

Evaluate: int_0^1(3x^2+5x)dx

Evaluate int _(0)^(2) x^3 dx

Evaluate int0 1e^(2-3x)dx as a limit of a sum.

Evaluate : int_(0)^(1)a^(2-3x)dx , as limit of sums .

Evaluate int_(0)^(1)x^(2)dx as the limit of a sum.