Home
Class 12
MATHS
int(0)^(2)e^(x)\ dx...

`int_(0)^(2)e^(x)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} e^{x} \, dx \), we will follow the steps of integration directly without using the limit of sums approach mentioned in the video transcript. ### Step-by-Step Solution: 1. **Identify the Integral**: We need to evaluate the integral: \[ \int_{0}^{2} e^{x} \, dx \] 2. **Find the Antiderivative**: The antiderivative of \( e^{x} \) is \( e^{x} \). Therefore, we can write: \[ \int e^{x} \, dx = e^{x} + C \] where \( C \) is the constant of integration. 3. **Evaluate the Definite Integral**: We will now evaluate the definite integral from 0 to 2: \[ \int_{0}^{2} e^{x} \, dx = \left[ e^{x} \right]_{0}^{2} \] 4. **Substitute the Limits**: Now we substitute the upper limit and the lower limit: \[ = e^{2} - e^{0} \] 5. **Simplify**: We know that \( e^{0} = 1 \), so: \[ = e^{2} - 1 \] 6. **Final Result**: Thus, the value of the integral is: \[ \int_{0}^{2} e^{x} \, dx = e^{2} - 1 \]

To solve the integral \( \int_{0}^{2} e^{x} \, dx \), we will follow the steps of integration directly without using the limit of sums approach mentioned in the video transcript. ### Step-by-Step Solution: 1. **Identify the Integral**: We need to evaluate the integral: \[ \int_{0}^{2} e^{x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(2) e^(-x)dx

int_(-1)^(1)e^(2x)dx

int_(0)^(1) x e^(x) dx=1

1. int_(0)^(oo)e^(-x/2)dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

int_(0)^(4)(x+e^(2x))dx

Estimate the value of int_(0)^(a)e^(x^(2))dx using (i) rectangle, (ii) triangle.

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))