To solve the integral \( \int_{0}^{2} e^{x} \, dx \), we will follow the steps of integration directly without using the limit of sums approach mentioned in the video transcript.
### Step-by-Step Solution:
1. **Identify the Integral**: We need to evaluate the integral:
\[
\int_{0}^{2} e^{x} \, dx
\]
2. **Find the Antiderivative**: The antiderivative of \( e^{x} \) is \( e^{x} \). Therefore, we can write:
\[
\int e^{x} \, dx = e^{x} + C
\]
where \( C \) is the constant of integration.
3. **Evaluate the Definite Integral**: We will now evaluate the definite integral from 0 to 2:
\[
\int_{0}^{2} e^{x} \, dx = \left[ e^{x} \right]_{0}^{2}
\]
4. **Substitute the Limits**: Now we substitute the upper limit and the lower limit:
\[
= e^{2} - e^{0}
\]
5. **Simplify**: We know that \( e^{0} = 1 \), so:
\[
= e^{2} - 1
\]
6. **Final Result**: Thus, the value of the integral is:
\[
\int_{0}^{2} e^{x} \, dx = e^{2} - 1
\]
To solve the integral \( \int_{0}^{2} e^{x} \, dx \), we will follow the steps of integration directly without using the limit of sums approach mentioned in the video transcript.
### Step-by-Step Solution:
1. **Identify the Integral**: We need to evaluate the integral:
\[
\int_{0}^{2} e^{x} \, dx
\]
...
Topper's Solved these Questions
INTEGRALS
NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos