Home
Class 12
MATHS
int(0)^(pi//2)(tanx)/(1+m^(2)tan^(2)x)\ ...

`int_(0)^(pi//2)(tanx)/(1+m^(2)tan^(2)x)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan x}{1 + m^2 \tan^2 x} \, dx, \] we will follow these steps: ### Step 1: Rewrite \(\tan x\) We know that \(\tan x = \frac{\sin x}{\cos x}\). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\frac{\sin x}{\cos x}}{1 + m^2 \left(\frac{\sin^2 x}{\cos^2 x}\right)} \, dx. \] ### Step 2: Simplify the integrand This can be simplified further: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\cos x} \cdot \frac{\cos^2 x}{\cos^2 x + m^2 \sin^2 x} \, dx. \] ### Step 3: Factor out \(\cos^2 x\) Now, we can factor out \(\cos^2 x\) in the denominator: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + m^2 \sin^2 x} \, dx. \] ### Step 4: Substitute \(u = \sin^2 x\) Let \(u = \sin^2 x\). Then, \(du = 2 \sin x \cos x \, dx\) or \(\sin x \cos x \, dx = \frac{du}{2}\). The limits change as follows: when \(x = 0\), \(u = 0\); when \(x = \frac{\pi}{2}\), \(u = 1\). Thus, we can rewrite the integral: \[ I = \frac{1}{2} \int_{0}^{1} \frac{du}{1 - u + m^2 u}. \] ### Step 5: Simplify the integrand The integrand simplifies to: \[ I = \frac{1}{2} \int_{0}^{1} \frac{du}{(1 + (m^2 - 1)u)}. \] ### Step 6: Integrate This integral can be solved using the formula for the integral of \(\frac{1}{a + bu}\): \[ \int \frac{du}{a + bu} = \frac{1}{b} \ln |a + bu| + C. \] Here, \(a = 1\) and \(b = m^2 - 1\): \[ I = \frac{1}{2} \cdot \frac{1}{m^2 - 1} \left[ \ln |1 + (m^2 - 1)u| \right]_{0}^{1}. \] ### Step 7: Evaluate the limits Now, substituting the limits: \[ I = \frac{1}{2(m^2 - 1)} \left( \ln |1 + (m^2 - 1) \cdot 1| - \ln |1 + (m^2 - 1) \cdot 0| \right). \] This simplifies to: \[ I = \frac{1}{2(m^2 - 1)} \left( \ln |m^2| - \ln |1| \right). \] Since \(\ln |1| = 0\): \[ I = \frac{1}{2(m^2 - 1)} \ln |m^2|. \] ### Final Result Thus, we have: \[ I = \frac{\ln m^2}{2(m^2 - 1)} = \frac{\ln m}{m^2 - 1}. \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan x}{1 + m^2 \tan^2 x} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate (int_(0)^(pi)/2)(tanxdx)/(1+m^(2)tan^(2)x)

Evaluate the following integrals: int_0^(pi//2)(tanx)/(1+m^2tan^2x)dx

int_(0)^(pi//2)(dx)/(1+tanx) is

int_0^(pi/2)1/(1+tan^2x)dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Evaluate the following: int_0^(pi/2) sqrt(tanx)/(1+sqrt(tanx))dx

int_0^(pi/4) (tanx-x)tan^2xdx

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)