Home
Class 12
MATHS
int(0)^(1) (x)/(sqrt(1 + x^(2))) dx...

`int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx`

A

`- sqrt2 - 1`

B

`sqrt2 + 1`

C

`- sqrt2 + 1`

D

`sqrt2 - 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x}{\sqrt{1 + x^2}} \, dx \), we will use substitution. Here are the steps: ### Step 1: Substitution Let \( t = 1 + x^2 \). Then, differentiate both sides with respect to \( x \): \[ dt = 2x \, dx \quad \Rightarrow \quad x \, dx = \frac{dt}{2} \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ t = 1 + 0^2 = 1 \] When \( x = 1 \): \[ t = 1 + 1^2 = 2 \] ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ I = \int_{1}^{2} \frac{1}{\sqrt{t}} \cdot \frac{dt}{2} \] This simplifies to: \[ I = \frac{1}{2} \int_{1}^{2} t^{-1/2} \, dt \] ### Step 4: Integrate Now, we integrate \( t^{-1/2} \): \[ \int t^{-1/2} \, dt = 2t^{1/2} + C \] Thus, \[ I = \frac{1}{2} \left[ 2t^{1/2} \right]_{1}^{2} \] This simplifies to: \[ I = \left[ t^{1/2} \right]_{1}^{2} \] ### Step 5: Evaluate the definite integral Now, evaluate the limits: \[ I = \left[ \sqrt{2} - \sqrt{1} \right] = \sqrt{2} - 1 \] ### Final Answer Thus, the value of the integral is: \[ I = \sqrt{2} - 1 \] ---

To solve the integral \( I = \int_{0}^{1} \frac{x}{\sqrt{1 + x^2}} \, dx \), we will use substitution. Here are the steps: ### Step 1: Substitution Let \( t = 1 + x^2 \). Then, differentiate both sides with respect to \( x \): \[ dt = 2x \, dx \quad \Rightarrow \quad x \, dx = \frac{dt}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx