Home
Class 12
MATHS
int(0)^(pi) x sin x cos^(2)x\ dx...

`int_(0)^(pi) x sin x cos^(2)x\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} x \sin x \cos^2 x \, dx \), we will use the property of definite integrals and some substitution. Here’s the step-by-step solution: ### Step 1: Use the property of definite integrals We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = \pi \). Thus, we write: \[ I = \int_0^{\pi} x \sin x \cos^2 x \, dx = \int_0^{\pi} (\pi - x) \sin(\pi - x) \cos^2(\pi - x) \, dx \] ### Step 2: Simplify the integral Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we have: \[ I = \int_0^{\pi} (\pi - x) \sin x \cos^2 x \, dx \] This can be split into two parts: \[ I = \int_0^{\pi} \pi \sin x \cos^2 x \, dx - \int_0^{\pi} x \sin x \cos^2 x \, dx \] Let’s denote the second integral as \( I \) again: \[ I = \pi \int_0^{\pi} \sin x \cos^2 x \, dx - I \] ### Step 3: Solve for \( I \) Adding \( I \) to both sides gives: \[ 2I = \pi \int_0^{\pi} \sin x \cos^2 x \, dx \] Thus, \[ I = \frac{\pi}{2} \int_0^{\pi} \sin x \cos^2 x \, dx \] ### Step 4: Evaluate the integral \( \int_0^{\pi} \sin x \cos^2 x \, dx \) We will use the substitution \( u = \cos x \), which gives \( du = -\sin x \, dx \). The limits change as follows: - When \( x = 0 \), \( u = 1 \) - When \( x = \pi \), \( u = -1 \) Thus, we have: \[ \int_0^{\pi} \sin x \cos^2 x \, dx = \int_1^{-1} (-u^2) \, du = \int_{-1}^{1} u^2 \, du \] ### Step 5: Calculate the integral \( \int_{-1}^{1} u^2 \, du \) The integral can be computed as: \[ \int_{-1}^{1} u^2 \, du = \left[ \frac{u^3}{3} \right]_{-1}^{1} = \left( \frac{1^3}{3} - \frac{(-1)^3}{3} \right) = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3} \] ### Step 6: Substitute back to find \( I \) Now substituting back, we get: \[ I = \frac{\pi}{2} \cdot \frac{2}{3} = \frac{\pi}{3} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{3}} \]

To solve the integral \( I = \int_0^{\pi} x \sin x \cos^2 x \, dx \), we will use the property of definite integrals and some substitution. Here’s the step-by-step solution: ### Step 1: Use the property of definite integrals We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = \pi \). Thus, we write: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin 3x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sinx cos x dx=?

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

int_(0)^(pi) [2sin x]dx=

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx