To evaluate the integral \( I = \int_0^{1/2} \frac{1}{(1+x^2)\sqrt{1-x^2}} \, dx \), we will use a trigonometric substitution. Here are the steps:
### Step 1: Substitution
Let \( x = \sin \theta \). Then, the differential \( dx \) is given by:
\[
dx = \cos \theta \, d\theta
\]
The limits change as follows:
- When \( x = 0 \), \( \theta = 0 \)
- When \( x = \frac{1}{2} \), \( \theta = \frac{\pi}{6} \)
### Step 2: Rewrite the Integral
Substituting \( x = \sin \theta \) into the integral, we have:
\[
I = \int_0^{\pi/6} \frac{1}{(1+\sin^2 \theta)\sqrt{1-\sin^2 \theta}} \cos \theta \, d\theta
\]
Since \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we can simplify the integral:
\[
I = \int_0^{\pi/6} \frac{\cos \theta}{1+\sin^2 \theta} \, d\theta
\]
### Step 3: Simplify the Denominator
We can express \( 1 + \sin^2 \theta \) as:
\[
1 + \sin^2 \theta = 1 + \frac{1 - \cos 2\theta}{2} = \frac{3 + \cos 2\theta}{2}
\]
Thus, we can rewrite the integral as:
\[
I = \int_0^{\pi/6} \frac{2 \cos \theta}{3 + \cos 2\theta} \, d\theta
\]
### Step 4: Further Substitution
Now, let \( t = \tan \theta \) so that \( \theta = \tan^{-1}(t) \) and \( d\theta = \frac{1}{1+t^2} \, dt \). The limits change as follows:
- When \( \theta = 0 \), \( t = 0 \)
- When \( \theta = \frac{\pi}{6} \), \( t = \frac{1}{\sqrt{3}} \)
### Step 5: Rewrite the Integral in Terms of \( t \)
Now, substituting \( \theta \):
\[
I = \int_0^{1/\sqrt{3}} \frac{2 \cdot \frac{1}{\sqrt{1+t^2}}}{3 + \frac{1-t^2}{1+t^2}} \cdot \frac{1}{1+t^2} \, dt
\]
This simplifies to:
\[
I = \int_0^{1/\sqrt{3}} \frac{2}{(3 + 1 - t^2)(1+t^2)} \, dt = \int_0^{1/\sqrt{3}} \frac{2}{(4 - t^2)(1+t^2)} \, dt
\]
### Step 6: Final Integration
Now we can integrate:
\[
I = \int_0^{1/\sqrt{3}} \frac{2}{4 - t^2} \cdot \frac{1}{1+t^2} \, dt
\]
This integral can be solved using partial fractions or recognized as a standard integral.
### Step 7: Evaluate the Integral
Using the standard integral form:
\[
\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C
\]
and evaluating the limits will yield the final answer.
### Final Answer
After evaluating the integral and applying the limits, we find:
\[
I = \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{\sqrt{2}}{\sqrt{3}}\right)
\]