Home
Class 12
MATHS
inttan^(-1)sqrt(x)\ dx is equal to...

`inttan^(-1)sqrt(x)\ dx` is equal to

A

`(x+1)tan^(-1) sqrt(x) - sqrt(x) + C`

B

`x tan^(-1) sqrt(x) - sqrt(x) + C`

C

`sqrt(x) - x tan^(-1) sqrt(x) + C`

D

`sqrt(x) - (x+1)tan^(-1)sqrt(x) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \tan^{-1}(\sqrt{x}) \, dx \), we will use integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(\sqrt{x}) \) - \( dv = dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we need to find \( du \) and \( v \): - To find \( du \), we differentiate \( u \): \[ du = \frac{d}{dx} \tan^{-1}(\sqrt{x}) \, dx = \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{1}{2\sqrt{x}} \, dx = \frac{1}{2\sqrt{x}(1+x)} \, dx \] - To find \( v \), we integrate \( dv \): \[ v = \int dx = x \] ### Step 3: Apply the integration by parts formula Now we can apply the integration by parts formula: \[ I = uv - \int v \, du \] Substituting the values we found: \[ I = \tan^{-1}(\sqrt{x}) \cdot x - \int x \cdot \frac{1}{2\sqrt{x}(1+x)} \, dx \] ### Step 4: Simplify the integral Now we simplify the integral: \[ I = x \tan^{-1}(\sqrt{x}) - \frac{1}{2} \int \frac{x}{\sqrt{x}(1+x)} \, dx = x \tan^{-1}(\sqrt{x}) - \frac{1}{2} \int \frac{\sqrt{x}}{1+x} \, dx \] ### Step 5: Substitute \( \sqrt{x} = t \) Let \( \sqrt{x} = t \), then \( x = t^2 \) and \( dx = 2t \, dt \). Substitute these into the integral: \[ I = x \tan^{-1}(\sqrt{x}) - \frac{1}{2} \int \frac{t}{1+t^2} \cdot 2t \, dt \] This simplifies to: \[ I = x \tan^{-1}(\sqrt{x}) - \int \frac{t^2}{1+t^2} \, dt \] ### Step 6: Split the integral Now we can split the integral: \[ \int \frac{t^2}{1+t^2} \, dt = \int \left( 1 - \frac{1}{1+t^2} \right) dt = \int dt - \int \frac{1}{1+t^2} dt \] ### Step 7: Evaluate the integrals Evaluating these integrals gives: \[ \int dt = t \quad \text{and} \quad \int \frac{1}{1+t^2} dt = \tan^{-1}(t) \] Thus, \[ \int \frac{t^2}{1+t^2} \, dt = t - \tan^{-1}(t) \] ### Step 8: Substitute back Substituting back into our expression for \( I \): \[ I = x \tan^{-1}(\sqrt{x}) - \left( \sqrt{x} - \tan^{-1}(\sqrt{x}) \right) + C \] ### Step 9: Combine terms Combining the terms gives: \[ I = x \tan^{-1}(\sqrt{x}) - \sqrt{x} + \tan^{-1}(\sqrt{x}) + C \] ### Final Result Thus, the final result is: \[ I = \tan^{-1}(\sqrt{x})(x + 1) - \sqrt{x} + C \]

To solve the integral \( I = \int \tan^{-1}(\sqrt{x}) \, dx \), we will use integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

The value of inta^sqrt(x)/sqrt(x) dx is equal to

inte^(sqrt(x))dx is equal to

int(1+x)/(1+3sqrt(x))dx is equal to

The value of inttan^(3)2xsec2x dx is equal to:

int sqrt(1+secx) dx is equal to:

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

int sqrt((x)/( 1-x))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to