Home
Class 12
MATHS
intx^3/(x+1)dxis equal to:...

`intx^3/(x+1)dx`is equal to:

A

`x+(x^(2))/(2)+(x^(3))/(3)-log|1-x|+C`

B

`x+(x^(2))/(2)-(x^(3))/(3)-log|1-x|+C`

C

`x-(x^(2))/(2)-(x^(3))/(3)-log|1+x|+C`

D

`x-(x^(2))/(2) + (x^(3))/(3) - log|1+x|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^3}{x+1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integrand: \[ \int \frac{x^3}{x+1} \, dx = \int \left( x^3 + 1 - 1 \right) \frac{1}{x+1} \, dx = \int \left( \frac{x^3 + 1}{x+1} - \frac{1}{x+1} \right) \, dx \] ### Step 2: Separate the Integral Now we can separate the integral into two parts: \[ \int \frac{x^3 + 1}{x+1} \, dx - \int \frac{1}{x+1} \, dx \] Let’s denote the first integral as \( I_1 \) and the second integral as \( I_2 \): \[ I = I_1 - I_2 \] ### Step 3: Solve \( I_2 \) The integral \( I_2 \) is straightforward: \[ I_2 = \int \frac{1}{x+1} \, dx = \log |x+1| + C_1 \] ### Step 4: Solve \( I_1 \) Next, we need to simplify \( I_1 \): \[ I_1 = \int \frac{x^3 + 1}{x+1} \, dx \] We can factor \( x^3 + 1 \) as \( (x+1)(x^2 - x + 1) \): \[ I_1 = \int (x^2 - x + 1) \, dx \] ### Step 5: Integrate \( I_1 \) Now we can integrate \( I_1 \): \[ I_1 = \int (x^2 - x + 1) \, dx = \frac{x^3}{3} - \frac{x^2}{2} + x + C_2 \] ### Step 6: Combine Results Now we can combine the results of \( I_1 \) and \( I_2 \): \[ I = I_1 - I_2 = \left( \frac{x^3}{3} - \frac{x^2}{2} + x + C_2 \right) - \left( \log |x+1| + C_1 \right) \] This simplifies to: \[ I = \frac{x^3}{3} - \frac{x^2}{2} + x - \log |x+1| + C \] where \( C = C_2 - C_1 \). ### Final Answer Thus, the final result is: \[ \int \frac{x^3}{x+1} \, dx = \frac{x^3}{3} - \frac{x^2}{2} + x - \log |x+1| + C \] ---

To solve the integral \( \int \frac{x^3}{x+1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integrand: \[ \int \frac{x^3}{x+1} \, dx = \int \left( x^3 + 1 - 1 \right) \frac{1}{x+1} \, dx = \int \left( \frac{x^3 + 1}{x+1} - \frac{1}{x+1} \right) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If intf(x)= Psi(x)dx+C then intx^(5)f(x^3)dx is equal to

If f(x)={{:(x,xlt1),(x-1,xge1):} , then underset(0)overset(2)intx^(2)f(x) dx is equal to :

intx^3e^(x^2)dx

intx^2 dx is equal to ..

intx2^(ln(x^(2)+1))dx is equal to

intx^4/(1+x^2)dx

intx^3dx is equal to …

intx^3/(1+x^2)^2dx

intx^5dx is equal to …