Home
Class 12
MATHS
Then integral int(pi//4)^((3pi)/4) (dx)/...

Then integral `int_(pi//4)^((3pi)/4) (dx)/(1+cosx)` is equal to

A

`1`

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I = int_(-pi//4)^(pi//4)(dx)/(1+cos2x) = int_(-pi//4)^(pi//4)(dx)/(2cos^(2)x)`
`= 1/2int_(-pi//4)^(pi//4) sec^(2)xdx = int_(0)^(pi//4) sec^(2)xdx = [tanx]_(0)^(pi//4) = 1`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to:

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: (2) (3) (4)

int_(-pi//4)^(pi//4) ( dx)/( 1+cos 2x) is equal to

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int_(-pi/2)^(pi/2)cosx dx

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

The value of the integral int_(-3pi)^(3pi)|sin^(3)x|dx is equal to

Prove that : int_(pi//4)^(3pi//4) (1)/(1+cos x) dx = 2

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to