Home
Class 12
MATHS
Prove that : int0^(pi/2)sqrt(1-sin2x)dx=...

Prove that : `int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)`

A

`2sqrt(2)`

B

`2(2+sqrt(2))`

C

`2`

D

`2(sqrt(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \, dx = 2(\sqrt{2} - 1), \] we will follow these steps: ### Step 1: Define the Integral Let \[ I = \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \, dx. \] ### Step 2: Rewrite the Expression We know that \[ \sin 2x = 2 \sin x \cos x. \] Thus, we can rewrite \(1 - \sin 2x\) as: \[ 1 - \sin 2x = 1 - 2 \sin x \cos x. \] Using the identity \(1 = \sin^2 x + \cos^2 x\), we can express \(1\) as: \[ 1 = \sin^2 x + \cos^2 x. \] So we have: \[ 1 - \sin 2x = \sin^2 x + \cos^2 x - 2 \sin x \cos x = (\sin x - \cos x)^2. \] ### Step 3: Substitute Back into the Integral Now substituting this back into the integral, we get: \[ I = \int_0^{\frac{\pi}{2}} \sqrt{(\sin x - \cos x)^2} \, dx. \] Since \(\sqrt{a^2} = |a|\), we have: \[ I = \int_0^{\frac{\pi}{2}} |\sin x - \cos x| \, dx. \] ### Step 4: Determine the Sign of the Expression To evaluate this integral, we need to determine where \(\sin x\) is greater than \(\cos x\) and vice versa. - At \(x = \frac{\pi}{4}\), \(\sin x = \cos x\). - For \(0 \leq x < \frac{\pi}{4}\), \(\cos x > \sin x\). - For \(\frac{\pi}{4} < x \leq \frac{\pi}{2}\), \(\sin x > \cos x\). Thus, we can split the integral: \[ I = \int_0^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) \, dx. \] ### Step 5: Evaluate Each Integral 1. **First Integral:** \[ \int_0^{\frac{\pi}{4}} (\cos x - \sin x) \, dx = \left[ \sin x + \cos x \right]_0^{\frac{\pi}{4}} = \left(\sin \frac{\pi}{4} + \cos \frac{\pi}{4}\right) - \left(\sin 0 + \cos 0\right). \] Calculating this gives: \[ = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) - (0 + 1) = \sqrt{2} - 1. \] 2. **Second Integral:** \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) \, dx = \left[-\cos x - \sin x \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \left(-\cos \frac{\pi}{2} - \sin \frac{\pi}{2}\right) - \left(-\cos \frac{\pi}{4} - \sin \frac{\pi}{4}\right). \] Calculating this gives: \[ = (0 - 1) - \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) = -1 + \sqrt{2} = \sqrt{2} - 1. \] ### Step 6: Combine the Results Now, combining both parts: \[ I = (\sqrt{2} - 1) + (\sqrt{2} - 1) = 2(\sqrt{2} - 1). \] ### Conclusion Thus, we have shown that: \[ \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \, dx = 2(\sqrt{2} - 1). \]

To prove that \[ \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \, dx = 2(\sqrt{2} - 1), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^(pi/2)sqrt(1+sinx)dx

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate: int_0^(pi//4)sqrt(1-sin^2x)dx

int_0^(pi/2) cosx/sqrt(1+sinx)dx

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

Prove that: int_0^(pi/4)(sqrt(tanx)+sqrt(cotx))\ dx=sqrt(2)pi/2