Home
Class 12
MATHS
int(0)^(pi//2) cosx\ e^(sinx)\ dx is equ...

`int_(0)^(pi//2) cosx\ e^(sinx)\ dx` is equal to

A

`e+1`

B

`e-1`

C

`e`

D

`-e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx \), we will use the substitution method. Here are the steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx \] ### Step 2: Use substitution Let us use the substitution: \[ t = \sin x \] Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = \cos x \, dx \] This means that: \[ \cos x \, dx = dt \] ### Step 3: Change the limits of integration Now we need to change the limits of integration according to our substitution: - When \( x = 0 \), \( t = \sin(0) = 0 \) - When \( x = \frac{\pi}{2} \), \( t = \sin\left(\frac{\pi}{2}\right) = 1 \) So, the new limits of integration are from \( 0 \) to \( 1 \). ### Step 4: Substitute in the integral Now we can rewrite the integral in terms of \( t \): \[ I = \int_{0}^{1} e^{t} \, dt \] ### Step 5: Evaluate the integral The integral of \( e^{t} \) is: \[ \int e^{t} \, dt = e^{t} \] Thus, we evaluate it from \( 0 \) to \( 1 \): \[ I = \left[ e^{t} \right]_{0}^{1} = e^{1} - e^{0} = e - 1 \] ### Final Result Therefore, the value of the integral is: \[ I = e - 1 \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx \), we will use the substitution method. Here are the steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer|13 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

The integral int_(0)^(pi) x f(sinx )dx is equal to

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of int_(0)^(pi//2)(cosxdx)/(1+cosx+sinx) is equal to

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^(pi)|cosx|dx=?

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int(1)/(cosx-sinx)dx is equal to

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

I=int_(0)^(2pi)(1)/(1+e^(sinx))dx is equal to