Home
Class 12
MATHS
int(sinx)/(3+4cos^(2)x)dx...

`int(sinx)/(3+4cos^(2)x)dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx \), we will use the substitution method. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx \] ### Step 2: Use substitution We will use the substitution \( \cos x = t \). Then, the derivative of \( \cos x \) gives us: \[ -\sin x \, dx = dt \quad \Rightarrow \quad \sin x \, dx = -dt \] ### Step 3: Substitute in the integral Substituting \( \cos x = t \) and \( \sin x \, dx = -dt \) into the integral, we have: \[ I = \int \frac{-dt}{3 + 4t^2} \] This can be rewritten as: \[ I = -\int \frac{dt}{3 + 4t^2} \] ### Step 4: Factor out constants We can factor out the constant from the denominator: \[ I = -\int \frac{dt}{4\left(\frac{3}{4} + t^2\right)} = -\frac{1}{4} \int \frac{dt}{\frac{3}{4} + t^2} \] ### Step 5: Rewrite the integral in standard form Recognizing that \( \frac{3}{4} = \left(\frac{\sqrt{3}}{2}\right)^2 \), we rewrite the integral: \[ I = -\frac{1}{4} \int \frac{dt}{\left(\frac{\sqrt{3}}{2}\right)^2 + t^2} \] ### Step 6: Use the standard integral formula The integral \( \int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \) applies here, where \( a = \frac{\sqrt{3}}{2} \): \[ I = -\frac{1}{4} \cdot \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1} \left( \frac{t}{\frac{\sqrt{3}}{2}} \right) + C \] This simplifies to: \[ I = -\frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{2t}{\sqrt{3}} \right) + C \] ### Step 7: Substitute back for \( t \) Recall that \( t = \cos x \): \[ I = -\frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{2\cos x}{\sqrt{3}} \right) + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx = -\frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{2\cos x}{\sqrt{3}} \right) + C \]

To solve the integral \( \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx \), we will use the substitution method. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

int(sin x)/(3+4 cos^(2)x)dx = …………………

int(sinx)/(3+4cos^2x)\ dx a. log(3+4cos^2x)+C (b) 1/(2sqrt(3))tan^(-1)((cosx)/(sqrt(3)))+C (c) -1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C (d) 1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C

Find following integrals (i) int(x^(5)-2)/(x^(4))dx (ii) int{x^((3)/(2))+4e^(x)+(1)/(x)}dx (iii) int cosecx{cosecx-cotx}dx (iv) int(1+sinx)/(cos^(2)x)dx

Evaluate : int(sinx)/(cos^(9//2)x)dx

Find the integral int(2-3sinx)/(cos^2x)dx

Evaluate: int(sinx)/(cos2x)\ dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

Evaluate : int ("sinx ")/("cos"^(2) x) " dx "

Write a value of int(sinx)/(cos^3x)\ dx