Home
Class 12
MATHS
The value of int(-pi)^(pi) sin^(3) x cos...

The value of `int_(-pi)^(pi) sin^(3) x cos^(2)x dx` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx \), we will first determine whether the integrand is an odd or even function. ### Step 1: Identify the function Let \( f(x) = \sin^3 x \cos^2 x \). ### Step 2: Check if the function is odd or even To determine if \( f(x) \) is odd or even, we will compute \( f(-x) \): \[ f(-x) = \sin^3(-x) \cos^2(-x) \] Using the properties of sine and cosine, we know: - \( \sin(-x) = -\sin(x) \) - \( \cos(-x) = \cos(x) \) Thus, we have: \[ f(-x) = (-\sin x)^3 \cdot (\cos x)^2 = -\sin^3 x \cdot \cos^2 x = -f(x) \] Since \( f(-x) = -f(x) \), this shows that \( f(x) \) is an odd function. ### Step 3: Apply the property of definite integrals We can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is an odd function} \] In our case, since \( f(x) \) is odd and we are integrating from \(-\pi\) to \(\pi\): \[ \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx = 0 \] ---

To solve the integral \( \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx \), we will first determine whether the integrand is an odd or even function. ### Step 1: Identify the function Let \( f(x) = \sin^3 x \cos^2 x \). ### Step 2: Check if the function is odd or even To determine if \( f(x) \) is odd or even, we will compute \( f(-x) \): ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(0)^(pi) x sin x cos^(2)x\ dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

The value of int_(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

int_(-pi/2)^(pi/2) sin x*cos^2 xdx

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

The value of int_(0)^(2pi) cos^(99)x dx , is