Home
Class 12
MATHS
If |veca|=10,|vecb|=2andveca.vecb=12, th...

If `|veca|=10,|vecb|=2andveca.vecb=12`, then the value of `|vecaxxvecb|` is

A

5

B

10

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the cross product of two vectors \(\vec{a}\) and \(\vec{b}\) given the following information: - \(|\vec{a}| = 10\) - \(|\vec{b}| = 2\) - \(\vec{a} \cdot \vec{b} = 12\) The formula for the dot product of two vectors is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Where \(\theta\) is the angle between the two vectors. From the information provided, we can substitute the known values into this formula: \[ 12 = 10 \cdot 2 \cdot \cos \theta \] Calculating the right side: \[ 12 = 20 \cos \theta \] Now, we can solve for \(\cos \theta\): \[ \cos \theta = \frac{12}{20} = \frac{3}{5} \] Next, we need to find \(\sin \theta\). We can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\cos^2 \theta\): \[ \sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1 \] Calculating \(\left(\frac{3}{5}\right)^2\): \[ \sin^2 \theta + \frac{9}{25} = 1 \] Subtracting \(\frac{9}{25}\) from both sides: \[ \sin^2 \theta = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] Taking the square root of both sides, we find: \[ \sin \theta = \pm \frac{4}{5} \] Now, we can find the magnitude of the cross product \(|\vec{a} \times \vec{b}|\) using the formula: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Substituting the known values: \[ |\vec{a} \times \vec{b}| = 10 \cdot 2 \cdot \left|\sin \theta\right| = 10 \cdot 2 \cdot \frac{4}{5} \] Calculating this: \[ |\vec{a} \times \vec{b}| = 20 \cdot \frac{4}{5} = 16 \] Thus, the value of \(|\vec{a} \times \vec{b}|\) is: \[ \boxed{16} \]

To solve the problem, we need to find the magnitude of the cross product of two vectors \(\vec{a}\) and \(\vec{b}\) given the following information: - \(|\vec{a}| = 10\) - \(|\vec{b}| = 2\) - \(\vec{a} \cdot \vec{b} = 12\) The formula for the dot product of two vectors is given by: ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

If |veca| = 10, |vecb|=2 and veca.vecb=12 , then the value of |veca xx vecb| is:

If |veca|=2, |vecb|=5 and |vecaxxvecb|=8 then find the value of veca.vecb

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If a,b are the magnitudes of vectors veca & vecb and veca.vecb=0 the value of |vecaxxvecb| is

If |vecAxxvecB|=sqrt(3) vecA.vecB , then the value of |vecA+vecB| is

If veca and vecb are two such that |veca|=5, |vecb|=4 and |veca.vecb|=10 , find the angle between veca and vecb and hence find |vecaxxvecb|

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

If |veca|=8,|vecb| = 3 and |veca xxvecb|=12 , find veca.vecb

If veca=i+j+k,veca.vecb=1 and vecaxxvecb=j-k , then : vecb =

NCERT EXEMPLAR ENGLISH-VECTOR ALGEBRA-OBJECTIVE TPYE QUESTIONS
  1. Find the area of triangle formed by the vectors from origin to the poi...

    Text Solution

    |

  2. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  3. If |veca|=10,|vecb|=2andveca.vecb=12, then the value of |vecaxxvecb| i...

    Text Solution

    |

  4. The vectors lamdahati+hatj+2hatk,hati+lamdahatj-hatkand2hati-hatj+lamd...

    Text Solution

    |

  5. If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0, then ...

    Text Solution

    |

  6. The projection vector of veca" on "vecb is

    Text Solution

    |

  7. If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|ve...

    Text Solution

    |

  8. If |veca|=4and-3lelamdale2, then the range of |lamdaveca| is

    Text Solution

    |

  9. The number of vectors of unit length perpendicular to the vectors veca...

    Text Solution

    |

  10. The vector veca+vecb bisects the angle between the non-collinear vecto...

    Text Solution

    |

  11. If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr...

    Text Solution

    |

  12. The vectors veca=3hati-2hatj+2hatkandvecb=-hati-2hatk are the adjacent...

    Text Solution

    |

  13. The values of k, for which |k" "veca|lt|veca| andkveca+(1)/(2)veca is ...

    Text Solution

    |

  14. The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

    Text Solution

    |

  15. If |vecaxxvecb|^(2)+|veca.vecb|^(2)=144and|veca|=4,"then "|vecb| is eq...

    Text Solution

    |

  16. If veca is any non-zero vector, then (veca.hati)hati+(veca.hatj)hatj+(...

    Text Solution

    |

  17. State true or false: If |veca|=|vecb|, then necessarily it implies vec...

    Text Solution

    |

  18. State true or false: Position vector of a point vecP is a vector whose...

    Text Solution

    |

  19. State true or false: If |veca+vecb|=|veca-vecb|, then the vectors veca...

    Text Solution

    |

  20. The formula (veca+vecb)^(2)=vec(a^(2))+vec(b^(2))+2vecaxxvecb is valid...

    Text Solution

    |