Home
Class 12
MATHS
If veca,vecbandvecc are three vectors su...

If `veca,vecbandvecc` are three vectors such that `veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5`, then the value of `veca.vecb+vecb.vecc+vecc.veca` is

A

0

B

1

C

`-19`

D

38

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given the conditions \( \vec{a} + \vec{b} + \vec{c} = 0 \) and the magnitudes \( |\vec{a}| = 2 \), \( |\vec{b}| = 3 \), and \( |\vec{c}| = 5 \). ### Step-by-Step Solution 1. **Understanding the Given Information:** We have three vectors \( \vec{a}, \vec{b}, \vec{c} \) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] This implies: \[ \vec{c} = -(\vec{a} + \vec{b}) \] 2. **Squaring the Magnitudes:** We know the magnitudes of the vectors: \[ |\vec{a}|^2 = 4, \quad |\vec{b}|^2 = 9, \quad |\vec{c}|^2 = 25 \] 3. **Taking the Dot Product:** Taking the dot product of the equation \( \vec{a} + \vec{b} + \vec{c} = 0 \) with itself: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] Expanding this gives: \[ \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 4. **Substituting the Magnitudes:** Substitute the known magnitudes: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 4 + 9 + 25 = 38 \] Therefore, we have: \[ 38 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 5. **Isolating the Dot Product Terms:** Rearranging gives: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -38 \] Dividing both sides by 2: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -19 \] ### Final Answer The value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) is: \[ \boxed{-19} \]

To solve the problem, we need to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given the conditions \( \vec{a} + \vec{b} + \vec{c} = 0 \) and the magnitudes \( |\vec{a}| = 2 \), \( |\vec{b}| = 3 \), and \( |\vec{c}| = 5 \). ### Step-by-Step Solution 1. **Understanding the Given Information:** We have three vectors \( \vec{a}, \vec{b}, \vec{c} \) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

NCERT EXEMPLAR ENGLISH-VECTOR ALGEBRA-OBJECTIVE TPYE QUESTIONS
  1. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  2. If |veca|=10,|vecb|=2andveca.vecb=12, then the value of |vecaxxvecb| i...

    Text Solution

    |

  3. The vectors lamdahati+hatj+2hatk,hati+lamdahatj-hatkand2hati-hatj+lamd...

    Text Solution

    |

  4. If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0, then ...

    Text Solution

    |

  5. The projection vector of veca" on "vecb is

    Text Solution

    |

  6. If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|ve...

    Text Solution

    |

  7. If |veca|=4and-3lelamdale2, then the range of |lamdaveca| is

    Text Solution

    |

  8. The number of vectors of unit length perpendicular to the vectors veca...

    Text Solution

    |

  9. The vector veca+vecb bisects the angle between the non-collinear vecto...

    Text Solution

    |

  10. If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr...

    Text Solution

    |

  11. The vectors veca=3hati-2hatj+2hatkandvecb=-hati-2hatk are the adjacent...

    Text Solution

    |

  12. The values of k, for which |k" "veca|lt|veca| andkveca+(1)/(2)veca is ...

    Text Solution

    |

  13. The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

    Text Solution

    |

  14. If |vecaxxvecb|^(2)+|veca.vecb|^(2)=144and|veca|=4,"then "|vecb| is eq...

    Text Solution

    |

  15. If veca is any non-zero vector, then (veca.hati)hati+(veca.hatj)hatj+(...

    Text Solution

    |

  16. State true or false: If |veca|=|vecb|, then necessarily it implies vec...

    Text Solution

    |

  17. State true or false: Position vector of a point vecP is a vector whose...

    Text Solution

    |

  18. State true or false: If |veca+vecb|=|veca-vecb|, then the vectors veca...

    Text Solution

    |

  19. The formula (veca+vecb)^(2)=vec(a^(2))+vec(b^(2))+2vecaxxvecb is valid...

    Text Solution

    |

  20. State true or false: If vecaandvecb are adjacent sides of a rhombus, t...

    Text Solution

    |