Home
Class 11
MATHS
If barxis at mean of n values of x, then...

If `barx`is at mean of n values of x, then `Sigma_(i=1)^(n) (x_(i)- barx)=0` and if a has value other than `barx " then " Sigma_(i=1)^(n) (x_(i)- barx)^(2) " is less than " Sigma(x_(i)-a)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given question step by step, let's break it down into two parts as stated in the question. ### Part 1: Proving that \( \Sigma_{i=1}^{n} (x_i - \bar{x}) = 0 \) 1. **Definition of Mean**: The mean \( \bar{x} \) of \( n \) values \( x_1, x_2, \ldots, x_n \) is defined as: \[ \bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} \] 2. **Rearranging the Mean**: From the definition, we can express the sum of the values as: \[ x_1 + x_2 + \ldots + x_n = n \bar{x} \] 3. **Summation Expression**: Now, we need to evaluate the expression \( \Sigma_{i=1}^{n} (x_i - \bar{x}) \): \[ \Sigma_{i=1}^{n} (x_i - \bar{x}) = (x_1 - \bar{x}) + (x_2 - \bar{x}) + \ldots + (x_n - \bar{x}) \] 4. **Factoring Out the Mean**: This can be rewritten as: \[ = (x_1 + x_2 + \ldots + x_n) - n\bar{x} \] 5. **Substituting the Sum**: Substitute \( x_1 + x_2 + \ldots + x_n \) with \( n\bar{x} \): \[ = n\bar{x} - n\bar{x} = 0 \] Thus, we have shown that: \[ \Sigma_{i=1}^{n} (x_i - \bar{x}) = 0 \] ### Part 2: Proving that \( \Sigma_{i=1}^{n} (x_i - \bar{x})^2 < \Sigma_{i=1}^{n} (x_i - a)^2 \) for \( a \neq \bar{x} \) 1. **Expanding the Squares**: We need to expand both sides of the inequality: - Left-hand side: \[ \Sigma_{i=1}^{n} (x_i - \bar{x})^2 \] - Right-hand side: \[ \Sigma_{i=1}^{n} (x_i - a)^2 \] 2. **Using the Expansion Formula**: The expansion of \( (x_i - a)^2 \) gives: \[ (x_i - a)^2 = (x_i - \bar{x} + \bar{x} - a)^2 \] Expanding this, we get: \[ = (x_i - \bar{x})^2 + 2(x_i - \bar{x})(\bar{x} - a) + (\bar{x} - a)^2 \] 3. **Summing Over All i**: Now, summing this over \( i \): \[ \Sigma_{i=1}^{n} (x_i - a)^2 = \Sigma_{i=1}^{n} (x_i - \bar{x})^2 + 2(\bar{x} - a) \Sigma_{i=1}^{n} (x_i - \bar{x}) + n(\bar{x} - a)^2 \] 4. **Using the Result from Part 1**: From Part 1, we know that \( \Sigma_{i=1}^{n} (x_i - \bar{x}) = 0 \). Therefore, the second term vanishes: \[ \Sigma_{i=1}^{n} (x_i - a)^2 = \Sigma_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - a)^2 \] 5. **Final Inequality**: Since \( n(\bar{x} - a)^2 > 0 \) when \( a \neq \bar{x} \), we conclude: \[ \Sigma_{i=1}^{n} (x_i - \bar{x})^2 < \Sigma_{i=1}^{n} (x_i - a)^2 \] Thus, we have shown that: \[ \Sigma_{i=1}^{n} (x_i - \bar{x})^2 < \Sigma_{i=1}^{n} (x_i - a)^2 \text{ for } a \neq \bar{x} \] ### Summary of Results 1. \( \Sigma_{i=1}^{n} (x_i - \bar{x}) = 0 \) 2. \( \Sigma_{i=1}^{n} (x_i - \bar{x})^2 < \Sigma_{i=1}^{n} (x_i - a)^2 \) for \( a \neq \bar{x} \)

To solve the given question step by step, let's break it down into two parts as stated in the question. ### Part 1: Proving that \( \Sigma_{i=1}^{n} (x_i - \bar{x}) = 0 \) 1. **Definition of Mean**: The mean \( \bar{x} \) of \( n \) values \( x_1, x_2, \ldots, x_n \) is defined as: \[ \bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} \] ...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTION|16 Videos
  • SETS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE AND FALSE|6 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

The value of Sigma_(n=1)^(3) tan^(-1)((1)/(n)) is

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

If barx represents the mean of n observations x_(1), x_(2),………., x_(n) , then values of Sigma_(i=1)^(n) (x_(i)-barx)

If Sigma_(i=1)^(10) x_i=60 and Sigma_(i=1)^(10)x_i^2=360 then Sigma_(i=1)^(10)x_i^3 is