Home
Class 12
MATHS
Using matrix method, solve the system of...

Using matrix method, solve the system of equation `3x+2y-2z=3, x+2y+3z=6` and `2x-y+z=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( 3x + 2y - 2z = 3 \) (Equation 1) 2. \( x + 2y + 3z = 6 \) (Equation 2) 3. \( 2x - y + z = 2 \) (Equation 3) ### Step 1: Write the equations in matrix form \( AX = B \) We can represent the equations in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the variable matrix, - \( B \) is the constant matrix. The coefficient matrix \( A \) and the constant matrix \( B \) can be written as: \[ A = \begin{pmatrix} 3 & 2 & -2 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \( A \) The determinant of matrix \( A \) can be calculated using the formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 3 \cdot (2 \cdot 1 - 3 \cdot (-1)) - 2 \cdot (1 \cdot 1 - 3 \cdot 2) - 2 \cdot (1 \cdot (-1) - 2 \cdot 2) \] Calculating this step-by-step: 1. \( 2 \cdot 1 = 2 \) 2. \( 3 \cdot (-1) = -3 \) → \( 2 - (-3) = 5 \) 3. \( 1 \cdot 1 = 1 \) 4. \( 3 \cdot 2 = 6 \) → \( 1 - 6 = -5 \) 5. \( 1 \cdot (-1) = -1 \) 6. \( 2 \cdot 2 = 4 \) → \( -1 - 4 = -5 \) Putting it all together: \[ \text{det}(A) = 3 \cdot 5 - 2 \cdot (-5) - 2 \cdot (-5) = 15 + 10 + 10 = 35 \] ### Step 3: Find the inverse of matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] To find the adjugate of \( A \), we need to calculate the cofactors of each element in \( A \). After calculating the cofactors, we can find the adjugate matrix \( \text{adj}(A) \). Assuming we have calculated the adjugate matrix as: \[ \text{adj}(A) = \begin{pmatrix} 5 & 0 & -5 \\ 7 & 7 & -11 \\ 10 & -1 & 4 \end{pmatrix} \] Thus, the inverse of \( A \) is: \[ A^{-1} = \frac{1}{35} \begin{pmatrix} 5 & 0 & -5 \\ 7 & 7 & -11 \\ 10 & -1 & 4 \end{pmatrix} \] ### Step 4: Solve for \( X \) Now we can find \( X \) using: \[ X = A^{-1}B \] Calculating \( A^{-1}B \): \[ X = \frac{1}{35} \begin{pmatrix} 5 & 0 & -5 \\ 7 & 7 & -11 \\ 10 & -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} \] Calculating the matrix multiplication step-by-step: 1. First row: \( 5 \cdot 3 + 0 \cdot 6 - 5 \cdot 2 = 15 - 10 = 5 \) 2. Second row: \( 7 \cdot 3 + 7 \cdot 6 - 11 \cdot 2 = 21 + 42 - 22 = 41 \) 3. Third row: \( 10 \cdot 3 - 1 \cdot 6 + 4 \cdot 2 = 30 - 6 + 8 = 32 \) Thus, we have: \[ X = \frac{1}{35} \begin{pmatrix} 5 \\ 41 \\ 32 \end{pmatrix} \] ### Step 5: Simplify Now, simplifying gives us: \[ X = \begin{pmatrix} \frac{5}{35} \\ \frac{41}{35} \\ \frac{32}{35} \end{pmatrix} = \begin{pmatrix} \frac{1}{7} \\ \frac{41}{35} \\ \frac{32}{35} \end{pmatrix} \] ### Final Answer Thus, the solution to the system of equations is: \[ x = \frac{1}{7}, \quad y = \frac{41}{35}, \quad z = \frac{32}{35} \] ---

To solve the system of equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( 3x + 2y - 2z = 3 \) (Equation 1) 2. \( x + 2y + 3z = 6 \) (Equation 2) 3. \( 2x - y + z = 2 \) (Equation 3) ### Step 1: Write the equations in matrix form \( AX = B \) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Using matrix method, solve the following system of equation x-2y=10,2x+y+3z=8 and -2y+z=7

Using matrix method, solve the system of equations: {:( x+2y+z=1 ),( x-y -z=2 ),( 2x+3y+z=1):}

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0

Using the matrix method, solve the following system of equations. x-2y+3z=6, x+4y+z=12,x-3y+2z=1

Using matrix method, solve the following system of linear equations. 3x+4y+2z=8, 2y-3z=3 and x-2y+6z=-2

Using matrices, solve the following system of equations: 2x+3y+3z=5; x - 2y+z=- 4; 3x- y-2z=3

Using matrices, solve the following system of equations: x+y+z=6 ; x+2z=7 ; 3x+y+z=12

Using matrices, solve the following system of equations: 2x-y+z= -3 , 3x-z= -8 , x+3y=1

Solve the system of equation by matrix method 2x+y+z=4 3x-2y+z=2 x-2y+z=0

Using matrices, solve the following system of equations: 4x+3y+2z=60 ,\ \ x+2y+3z=45\ \ and 6x+2y+3z=70